判别式

来自testwiki
跳转到导航 跳转到搜索

Template:No footnotes Template:NoteTA

一元二次多项式的判别式 Δ与其函数图像之间的关系

判別式代数学中的概念,它可以推斷出一个系数系数多项式的屬性。

当多项式的系数不是实数或复数时,同样有判别式的概念。判别式总是系数域中的元素。这时,判别式为零当且仅当多项式在它的分裂域中有重根。判别式的通常形式为:

an2n2i<j(rirj)2

其中的an是多项式的最高次项系数,r1,...,rn是多项式在某个分裂域中的根(如有重根的按重数重复排列)。

判别式的概念也被推广到了多项式以外的其它代数结构,比如说圆锥曲线二次型代数数域中。在代数数论中,判别式与所谓的“分歧”的概念紧密相关。实际上,愈为几何的分歧类型对应着愈为抽象的判别式类型,因此在许多方面判别式都是一个中心概念。判别式在本质上表现为相应行列式的计算。

定义

二次方程的判别式

最简单的判别式情形出现在二次多项式方程的求解中。假设有二次多项式方程ax2+bx+c,其中系数a,b,c实数,则它的判别式定义为:

Δ=b24ac

判别式也是一个实数。如果设方程的两个根为r1r2,那么根据二次方程的求根公式,两个根可以表示为:

r1=b+Δ2a,r2=bΔ2a.

方程的根与判别式的关系为:

Δ=a2(r1r2)2.

两个根都是实数,当且仅当判别式大于等于零。当且仅当两根相等时,判别式等于零。如果判别式小于零,则两根是共轭复数

三次方程的判别式

Δ=b2c24ac34b3d27a2d2+18abcd
  • 二次項系數為零的首一三次多項式x3+px+q的判别式是:
Δ=4p327q2

四次方程的判别式

Δ=b2c2d24b3d34ac3d2+18abcd327a2d4+256a3e34b2c3e+18b3cde+16ac4e80abc2de6ab2d2e+144a2cd2e27b4e2+144ab2ce2128a2c2e2192a2bde2

二次判别式

二次多项式P(x)=ax2+bx+c的判别式是D=b24ac。在一元二次方程的求解中,判别式用来判断方程根的情况,并出现在根的表达式中。

  • 如果D>0,那么P(x)有两个相异实根x1,2=b±b24ac2a,即P(x)的图像穿过x轴两次。
  • 如果D=0,那么P(x)有两个相等实根x1=x2=b2aP(x)的图像与x相切
  • 如果D<0,那么P(x)没有实根,即P(x)的图像与x轴没有交点。

一般多项式的判别式

对于一般的一个多项式

p(x)=anxn+an1xn1+an2xn2++a1x+a0

其判别式等于(差一个系数)以下的(2n1)×(2n1)矩阵行列式(见西尔维斯特矩阵):

[anan1an2a1a0000anan1an2a1a000 0 0anan1an2a1a0nan(n1)an1(n2)an2 a1000nan(n1)an1(n2)an2 a100 000nan(n1)an1(n2)an2 a1].

这个矩阵的行列式称为p(x)p(x)结式,记为R(p,p)p(x)的判别式D(p)由以下公式给出:

D(p)=(1)12n(n1)1anR(p,p).

例如,在n=4的情况下,以上的行列式是:

|a4a3a2a1a0000a4a3a2a1a0000a4a3a2a1a04a43a32a21a100004a43a32a21a100004a43a32a21a100004a43a32a21a1|

这个四次多项式的判别式就是这个行列式除以a4

作为等价条件,多项式的判别式等于:

an2n2i<j(rirj)2

其中r1,,rn是多项式p(x)根(重根按重数计算):

p(x)=anxn+an1xn1++a1x+a0=an(xr1)(xr2)(xrn)

在这个表达式中可以清楚地看到p有重根当且仅当判别式为零。

多项式的判别式可以在任意的中定义,定义方式一样。带有根ri的表达式仍然有效,只是根要在系数域的某个分裂域中取。

圆锥曲线的判别式

对于以下多项式所定义的圆锥曲线

ax2+bxy+cy2+dx+ey+f=0

它的判别式为:

b24ac

它决定了圆锥曲线的形状。如果判别式小于0,则是椭圆。如果判别式等于0,则是一条抛物线。如果大于0,则是双曲线。这个公式不适用于退化的情形(当这个多项式可以因式分解时)。

二次型的判别式

判别式的概念可以推广到任意特征不为2的域K上的二次型Q上。一个化简后的二次型可以表示为一系列的平方和:

Q=i=1kaiLi2

其中Lin个变量的线性组合。这时可以定义Q的判别式为所有ai的乘积。另外一个定义是Q所对应的矩阵的行列式

代数数域的判别式

Template:Main

参见

参考资料与外部链接

Template:多项式