切萨罗求和

来自testwiki
imported>InternetArchiveBot2025年1月8日 (三) 12:45的版本 (Add 1 book for verifiability (20250107)) #IABot (v2.0.9.5) (GreenC bot
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

切薩羅求和Template:Lang-en)也稱為切薩羅平均(Cesàro mean)[1][2]切薩羅極限(Cesàro limit)[3],是由義大利的數學家恩納斯托·切薩羅(Ernesto Cesàro)發明,是計算無窮級數和的方式。若一級數收斂至α,則其切薩羅和存在,其值為 α,而有些發散級數也可以用切薩羅求和的方式,計算出切薩羅和。可以計算切薩羅求和的級數是切薩羅可求和的級數。

切薩羅求和可視為是一種特殊的Template:Le

切薩羅求和中的「求和」一詞可能會造成誤解,而有關切薩羅求和的敘述和證明也和無窮級數證明的Template:Le有關。有關切薩羅可求和級數,常被提到的是格蘭迪級數,依照切薩羅求和可得其「和」為1/2

定義

令{an}為一數列,且令

sk=a1++ak

為數列前k項的部份和

n=1an.

若以下的條件成立,則此數列{an}的切薩羅和存在,且其值為α。

limns1++snn=α.

格蘭迪級數的例子

Template:Mainan = (-1)n+1, n ≥ 1。因此{an} 為以下的數列:

1,1,1,1,

其部份和組成的數列 {sn} 為

1,0,1,0,

此數列為格蘭迪級數,不會收斂。

而數列 {(s1 + ... + sn)/n} 的各項分別為

11,12,23,24,35,36,47,48,

n趨近於無限大,切薩羅和為如下極限:

limns1++snn=1/2

因此,數列 {an} 的切薩羅和為 1/2。

推廣

切薩羅在1890年發展了更廣泛的切薩羅和,表示為(C, n),其中n為非負整數。 (C, 0) 是一般定義下的和,而(C, 1)就是上述的切薩羅和。

n>1時的(C, n) 如下所述: 對於級數Σan, 定義

An1=an;Anα=k=0nAkα1

(上面的指数不表示指数)且定義 Enα 為數列 1 , 0 , 0 , 0 , 0· · · 的 Anα。 則 Σan 的 (C, α) 和則為

limnAnαEnα

若以上數值存在。[4]

这种描述代表初始求和方法的 α 次迭代应用。

相關條目

註解

Template:Reflist

參考文獻