并集

来自testwiki
跳转到导航 跳转到搜索

Template:NoteTA

A和B的并集

集合论数学的其他分支中,一群集合并集(Union)[1],是以这群集合的所有元素來构成的集合。

有限聯集

聯集是由公理化集合论分類公理來確保其唯一存在的特定集合 AB

(A)(B)(x){(xAB)[(xA)(xB)]}

也就是直觀上:

「對所有 xxAB 等價於 xAxB

举例:

集合{1,2,3}{2,3,4}的并集是{1,2,3,4}。数9不属于素数集合{2,3,5,7,11,}偶数集合{2,4,6,8,10,}的并集,因为9既不是素数,也不是偶数。

更通常的,多个集合的并集可以这样定义: 例如,A,BC的并集含有所有A的元素,所有B的元素和所有C的元素,而没有其他元素。形式上:

xABC的元素,当且仅当x属于Ax属于Bx属于C

代数性质

二元并集(两个集合的并集)是一种结合运算,即

A(BC)=(AB)C。事实上,ABC也等于这两个集合,因此圆括号在仅进行并集运算的时候可以省略。

相似的,并集运算满足交换律,即集合的顺序任意。

空集是并集运算的单位元。即A=A,对任意集合A。可以将空集当作个集合的并集。

结合交集补集运算,并集运算使任意幂集成为布尔代数。例如,并集和交集相互满足分配律,而且这三种运算满足德·摩根律。若将并集运算换成对称差运算,可以获得相应的布尔环

无限并集

公理化集合论并集公理,有唯一的集合 滿足:

()(x){(x)(A)[(A)(xA)]}

也就是直觀上「對所有 和所有 xx 等價於有某個 的下屬集合 A ,使得xA」。以上的 可以直觀的視為一個集合族,而把 看成對 內的集合取并集,但這個公理並沒有對 下屬集合的數量做出任何限制,所以這個 被俗稱為任意并集无限并集

X ,會稱 X 覆蓋(cover),也就是直觀上可以用 裡的所有集合疊起來蓋住 X

例如:

={A,B,C}=ABC ,若 M空集 也是空集。

无限并集有多种表示方法:

可模仿求和符号記為

AA

但大多數人會假設指标集 I 的存在,換句話說

IAiIA(i):=

指标集 I自然数系 的情况下,更可以仿无穷级数來表示,也就是說:

Ai=0A(i):=

也可以更粗略直觀的將 i=0A(i) 写作A0A1A2

无限并集的性質

Template:Math theorem

證明
(1) (x)[¬(x)] (空集公理)

(2) ¬(S)(MP with A4, 1)

(3)(S)[¬(xS)](M0 with 2)

(4)¬¬(S)[¬(xS)](Equv with DN, 3)

(5)¬{[¬(S)][¬(xS)]}(Equv with De Morgan, 4)

(6)(S){¬{[¬(S)][¬(xS)]}}(GEN with S , 5)

(7)¬(S){[¬(S)][¬(xS)]}(Equv with DN, 6)

(8)(x){(x)(S){(S)(xS)}}(MP with 并集公理, A4)

(9)(x)(S){(S)(xS)}(MP with A4, 8)

(10)(x)(S){(S)(xS)}(MP with AND ,9)

(11)¬(S){(S)(xS)}¬(x)(MP with T, 10)

(12)¬(x)(MP with 7, 11)

(13)(x)(x∉)(GEN with x , 12)

(14)(y=)(x)[¬(xy)] (E)

(15)(y){(y=)(x)[¬(xy)]} (GEN with y , 14)

(16)(=)(x)[¬(x)](MP with A4, 15)

(17) = (Equv with 13, 16)

比較性質

Template:Math theorem

證明
注意到可以從(AND)得到
(𝒫𝒬),(𝒫),𝒫𝒬

換句話說,從演繹元定理

(u) (𝒫𝒬),(𝒫)𝒫(𝒬)

(1) (A)[(A)(A𝒩)] (Hyp)

(2) (A)(A𝒩)(MP with 1, A4)

(3) [(aA)(A)](A)(AND)

(4)[(aA)(A)](aA)(AND)

(5)[(aA)(A)](A𝒩)(D1 with 2, 3)

(6)[(aA)(A)][(aA)(A𝒩)](u with 4, 5)

(7)(A)(aA)(A𝒩)(aA)(GENe with A, 6)

(8) (x){(x)(A)(xA)}(MP with 并集公理, A4)

(9) (x){(x𝒩)(A𝒩)(xA)}(MP with 并集公理, A4)

(10) (x)(A)(xA) (MP with 8, A4)

(11) (x𝒩)(A𝒩)(xA) (MP with 9, A4)

(12) (x)(A𝒩)(xA)(D1 with 7, 10)

(13) (x)(x𝒩)(D1 with 11, 12)

(14) (x)[(x)(x𝒩)](GEN with a , 13)

覆蓋性質

Template:Math theorem

A 正好就是其冪集的聯集」,這個定理直觀上可理解成,因為冪集 𝒫(A) 是以 AA子集為元素,所以 𝒫(A) 的聯集理當是 A

證明
注意到可以從(AND)得到
(𝒫𝒬),(𝒫),𝒫𝒬

換句話說,從演繹元定理

(u) (𝒫𝒬),(𝒫)𝒫(𝒬)

(1)(x){[x𝒫(A)](S){[S𝒫(A)](xS)}}(MP with 并集公理, A4)

(2) (S){[S𝒫(A)](SA)}(幂集公理)

(3) [S𝒫(A)](SA)(MP with A4 ,2)

(4) (x){[x𝒫(A)](S)[(SA)(xS)]} (Equv with 1, 3)

(5) [(SA)(xS)](SA)(AND)

(6) (x)[(xS)(xA)][(xS)(xA)](A4)

(7) [(SA)(xS)][(xS)(xA)](D1 with 5, 6)

(8) [(SA)(xS)](xS)(AND)

(9) [(SA)(xS)]{(xS)[(xS)(xA)]}(u with 7, 8)

注意到

(xS),[(xS)(xA)](xA)

再對上式套用(AND)就有

{(xS)[(xS)(xA)]}(xA)(a)

(10') [(SA)(xS)](xA)(D1 with a, 9)

(11') (S)[(SA)(xS)](xA)(GENe with S, 10')

(12') (S){¬[(SA)(xS)]}{¬[(AA)(xA)]} (A4)

(13') [(AA)(xA)](S)[(SA)(xS)] (MP with T, 12')

(14') (xA)(xA) (I)

(15') AA (GEN with x , 14')

注意到(AND)依據演繹定理可改寫為

(AA)(xA)[(AA)(xA)](b)

(16'') (xA)[(AA)(xA)] (b with 15')

(17'') (xA)(S)[(SA)(xS)] (D1 with 13', 16'')

(18'') (xA)(S)[(SA)(xS)] (AND with 11', 17'')

(19'') (x){[x𝒫(A)](xA)}(Equv with 4, 18''')

Template:Math theorem

直觀上,這個定理說「一群集合的聯集包含於 A ,則它們個個都包含於 A

證明
(1) (a)[(M)(aM)(aA)] (Hyp)

(2) [(M)(aM)](M)(aM) (A4 and T)

(3) (M)(aM)(aA) (MP with 1, A4)

(4) [(M)(aM)](aA) (D1 with 2, 3)

(5) (M)[(aM)(aA)] (MP with abb, 4)

(6) (a){(M)[(aM)(aA)]} (GEN with a , 5)

(7) (M)(a)[(aM)(aA)] (MP with A5 , 6)

(8) (M){(M)(a)[(aM)(aA)]} (GEN with M , 7)

Template:Math theorem直觀上,這個定理說「集族 的聯集為 A ,則對 A 的每點 a ,都可從 裡找到一個 a 的鄰域 M ,且這個鄰域不會比 A 大 」

證明
注意到可以從(AND)得到
(𝒫𝒬),(𝒫),𝒫𝒬

換句話說,從演繹元定理

(u) (𝒫𝒬),(𝒫)𝒫(𝒬)

(1) (a)[(aA)(M)(aM)] (Hyp)

(2) (M)(MA)(MP with 1, 定理3)

(3) (M)(MA)(MP with A4, 2)

(4) [(aM)(M)](M)(AND)

(5) [(aM)(M)](aM)(AND)

(6) [(aM)(M)](M)(AND)

(7) [(aM)(M)](MA) (D1 with 3, 4)

(8) [(aM)(M)][(aM)(M)](a with 5, 6)

(9) [(aM)(M)][(aM)(M)(MA)](a with 7, 8)

(10) (M)(aM)(M)[(aM)(MA)](GENe with M, 9)

(11) (aA)(M)(aM)(MP with A4, 1)

(12) (aA)(M)(aM)(AND with 11)

(13) (aA)(M)[(aM)(MA)](D1 with 10, 12)

(14) (aA)(M)[(aM)(MA)](GEN with a, 13)

(15)(S){[S𝒫(A)](SA)}(幂集公理)

(16)[M𝒫(A)](MA)(MP with A4, 15)

(17)(aA)(M){(aM)[M𝒫(A)]}(Equv with 14, 16)

(18) (A)(B)(x){(xAB)[(xA)(xB)]}(有限交集)

(19)(B)(x){(xB)[(x)(xB)]}(MP with A4, 18)

(20)(x){[x𝒫(A)]{(x)[x𝒫(A)]}}(MP with A4, 19)

(21)[M𝒫(A)]{(M)[M𝒫(A)]}(MP with A4, 20)

(22)(aA)(M){(aM)[M𝒫(A)]}(Equv with 17, 21)

(23){a[𝒫(A)]}(M){(aM)[M𝒫(A)]}(MP with 并集公理, A4)

(24)(a){(aA){a[𝒫(A)]}}(Equv with 22, 23)

運算性質

Template:Math theorem

證明
(1)(B)[(BA)(M)(B=MA)] (A的定義)

(2) (x){(x)(B)(xB)}(MP with 并集公理, A4)

(3) (A)(B)(x){(xAB)[(xA)(xB)]}(有限交集)

(4)(xA)(B)[(BA)(xB)](MP with A4, 2)

(5) (BA)(M)(B=MA)(MP with A4, 1)

(6) (xA)(B)[(xB)(M)(B=MA)](Equv with 4, 5)

(7)(xA)(B)(M)[(xB)(M)(B=MA)](Equv with Ce, 6)

(8)(xA)(M)(B)[(xB)(M)(B=MA)](Equv with 量詞可交換性 ,7)

(9) (B=MA){[(xB)(M)(B=MA)][(xMA)(M)(MA=MA)]}(E2)

(10)[(xB)(M)(B=MA)](B=MA)(AND)

(11)[(xB)(M)(B=MA)]{[(xB)(M)(B=MA)][(xMA)(M)(MA=MA)]}(D1 with 9,10)

(12){[(xB)(M)(B=MA)][(xB)(M)(B=MA)]}

{[(xB)(M)(B=MA)][(xMA)(M)(MA=MA)]}(MP with A2, 11)

(13)[(xB)(M)(B=MA)][(xB)(M)(B=MA)](I)

(14)[(xB)(M)(B=MA)][(xMA)(M)(MA=MA)](MP with 12, 13)

(15)[(xMA)(M)(MA=MA)][(xMA)(M)](AND)

(16)[(xB)(M)(B=MA)][(xMA)(M)](D1 with 14,15)

(17)(M)(B)[(xB)(M)(B=MA)](M)[(xMA)(M)](GENe with B then M)

(18)MA=MA (E1)

注意到配合(AND)和演繹定理

𝒫(𝒫)(a)

(19)[(xMA)(M)][(xMA)(M)(MA=MA)](a with 18)

(20)(B){¬[(xB)(M)(B=MA)]}{¬[(xMA)(M)(MA=MA)]}(A4)

(21)[(xMA)(M)(MA=MA)](B)[(xB)(M)(B=MA)](MP with T, 20)

(22)[(xMA)(M)](B)[(xB)(M)(B=MA)](D1 with 19, 21)

(23)(M)[(xMA)(M)](M)(B)[(xB)(M)(B=MA)](GENe with M)

(24)(M)(B)[(xB)(M)(B=MA)](M)[(xMA)(M)](AND with 17, 23)

(25)(xA)(M)[(xMA)(M)](Equv with 8, 24)

(26) (xMA)[(xM)(xA)](MP with A4, 3)

(27)(xA)(M)[(xM)(xA)(M)](Equv with 25, 26)

(28)(xA){(M)[(xM)(M)](xA)}(Equv with Ce, 27)

(30) (x)(M)(xM)(MP with A4, 2)

(31)(xA)[(x)(xA)](Equv with 28, 30)

(32)[xA()][(xA)(x)](MP with A4, 3)

(33)[xA()](xA)(Equv with 31, 32)

(34)(x){[xA()](xA)}(GEN with x, 33)

直觀上這個定理說,交集在「无限并集满足分配律」,一般會不正式的寫為

iI(ABi)=AiIBi

Template:Math theorem

這個定理一般會被不正式的寫為

i=0(j=iAj)i=0(j=iAj)

参考

参考文献

Template:集合论