正弦-戈尔登方程

正弦-戈尔登方程是十九世纪发现的一种偏微分方程:
來自下面的拉量:
由于正弦-戈尔登方程有多种孤立子解而倍受瞩目。
名字是物理家熟悉的克莱因-戈尔登方程(Klein-Gordon)的雙關語。[1]
孤立子解
扭型孤立子
![]() |
![]() |
钟型孤立子
正弦-戈尔登方程有如下孤立子解:
其中
![]() |
![]() |
双孤立子解
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() |
三孤立子解
![]() |
![]() |
呼吸子解

![]() |
![]() |
几何解释

根據陳省身的研究,正弦-戈尔登方程有一个几何解释:三维欧几里德空间的负常曲率曲面(偽球面)。[3]
正弦-戈尔登方程是:[4]
跟Template:Le有關。[5]
量子場論
正弦-戈尔登是Template:Le的S對偶。
半經典量子化:[6]
參見
参考文献
- ↑ Template:Cite book
- ↑ Inna Shingareva Carlos Lizarraga Celaya, Solving Nonlinear Partial Differential Equations with Maple and Mathematica, p86-94,Springer
- ↑ 陈省身 Geometrical interpretation of the sinh-Gordon equation。annals Polonici Mathematici XXXIX 1981
- ↑ Template:Cite book
- ↑ Template:Cite journal
- ↑ Template:Cite journal
閱讀
- Bour E (1862). "Théorie de la déformation des surfaces" Template:Wayback. J. Ecole Imperiale Polytechnique. 19: 1–48.
- Rajaraman, R. (1989). Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland Personal Library. 15. North-Holland. pp. 34–45. ISBN 978-0-444-87047-6.
- Polyanin, Andrei D.; Valentin F. Zaitsev (2004). Handbook of Nonlinear Partial Differential Equations. Chapman & Hall/CRC Press. pp. 470–492. ISBN 978-1-58488-355-5.
- Dodd, Roger K.; J. C. Eilbeck, J. D. Gibbon, H. C. Morris (1982). Solitons and Nonlinear Wave Equations. London: Academic Press. ISBN 978-0-12-219122-0.
- Georgiev DD, Papaioanou SN, Glazebrook JF (2004). "Neuronic system inside neurons: molecular biology and biophysics of neuronal microtubules". Biomedical Reviews 15: 67–75.
- Georgiev DD, Papaioanou SN, Glazebrook JF (2007). "Solitonic effects of the local electromagnetic field on neuronal microtubules". Neuroquantology 5 (3): 276–291.














