偽球面
跳转到导航
跳转到搜索
偽球面(Template:Lang-en,又譯擬球面)是幾何學中高斯曲率恆為負的平面。一半徑的偽球面,是中每點高斯曲率均為的平面。偽球面這個名稱是類比半徑的球面(曲率的平面),由贝尔特拉米於1868年雙曲幾何模型的論文提出。[1][2][3] 其為曳物線繞其漸近線的旋轉曲面。

定义
对于平面上的曳物线,其参数方程为.
当其绕z轴旋转一圈时,根据旋转曲面的一般参数方程[4],可得到曲面标准参数方程:
其中 .
该方程即为曳物面方程,又称伪球面方程。
性质
伪球面是一个奇异空间 (赤道上的点为奇点) 。但在奇点外,它具有恒定的负高斯曲率,因此局部等距于双曲面。
“伪球”这个名字的产生是因为它是一个有恒定负高斯曲率的二维曲面,和一个球有恒定正高斯曲率恰恰相反。就像球体在每一点上都有一个正曲率的球面几何一样,伪球在除奇点每一点上都有一个负曲率的双曲几何。
早在1693年,惠更斯(Christiaan Huygens)就发现尽管其旋转后的范围是无限的, 但伪球的体积和表面积是有限的。对于给定的伪半径 R,伪球的表面积是,和同半径·球面相同。