麥卡托投影法

来自testwiki
跳转到导航 跳转到搜索

Template:No footnotes Template:NoteTA

麥卡托世界地图(1569年)
以麥卡托投影法呈現的世界地圖。

麥卡托投影法Template:Lang-en),又稱-{zh-cn:麦卡托; zh-tw:墨卡托}-投影法正軸等角圓柱投影,是一種等角的圓柱形地圖投影法

本投影法得名於法蘭德斯(佛蘭德)出身的地理學家傑拉杜斯·麥卡托,他於1569年發表長202公分、寬124公分以此方式繪製的世界地圖。在以此投影法繪製的地圖上,將地球在平面展開,緯線於任何位置皆垂直相交,使世界地圖可以繪製在一個長方形,地圖的任一點在各種方向的長度均相等。由於可顯示任兩點間的正確方位,指出真實的經緯度,航海用途的海圖航路圖大都以此方式繪製。在该投影中线型比例尺在图中任意一点周围都保持不变,從而可以保持大陆轮廓投影-{zh-hans:后;zh-hant:後}-的角度和形状不变(即等角);但麥卡托投影会使面积产生变形,赤道地區變化最小,兩極的變形最大,但因為在迴歸線之間影響很少,而這是多數航線所在區域,所以被廣泛用來編製地圖。

数学计算

地图上纵向方位(图中的横轴)和纬度(图中的纵轴)的关系。

下列公式在使用墨卡托投影的地图中,从纬度φ经度λ(其中λ0本初子午線)推导为坐标系中的坐标xy

这是古德曼函数的逆推导:

x=λλ0y=ln(tan(π4+φ2))=12ln(1+sin(φ)1sin(φ))=tanh1(sin(φ))=sinh1(tan(φ))=ln(tan(φ)+sec(φ)).

这是古德曼函数:

φ=2tan1(ey)π2=tan1(sinh(y))λ=x+λ0.

比例尺与纬度φ正割成比例,越趋向极地φ = ±90°)面积变形越大。此外,由公式可知,极点处的y值为正负无穷大。

公式推导

麥卡托投影是一种等角投影。

假设地球为正球形。(实际上并非为正球形,而是有扁率的,但制作小比例尺地图时误差可忽略不计。若需更精确,可插入等角纬线。)我们需要将经纬度坐标(λφ)转换为笛卡尔坐标(xy),求以赤道为基准的切柱面投影(即x = λ),并保持形状不变,故:

xλ=cos(φ)yφ
yλ=cos(φ)xφ

x = λ 可知

xλ=1
xφ=0

给出

1=cos(φ)yφ
0=yλ

因此,yφ的唯一函数,且可得到y=secφ,由积分表

y=ln(|sec(φ)+tan(φ)|)+C.

在地图中φ = 0得到y = 0,所以取C = 0.

以麥卡托投影法繪製的地圖。

錯覺

由於麥卡托投影在高緯度過分放大,低緯度又過分縮小,因此會產生有趣的錯覺。比如世界第一大島高緯度的格陵蘭澳洲看起來還大好幾倍。世界第二大島低緯度的新幾內亞日本差不多大小。然而新幾內亞島面積足足是日本的2倍。

以下是實際面積(單位:平方公里)

  • 澳洲:7,692,024平方公里
  • 格陵蘭:2,166,086平方公里
  • 日本:378,000平方公里
  • 新幾內亞島:786,000平方公里

参见

參考資料

Template:Wikt

  • Template:Cite book可至USGS pages下载。
  • Template:Cite book
  • Needham, Joseph (1986). Science and Civilization in China: Volume 3; Mathematics and the Sciences of the Heavens and the Earth. Taipei: Caves Books Ltd.
  • Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 3, Civil Engineering and Nautics. Taipei: Caves Books Ltd.

Template:Authority control