特殊函数的渐近展开式

来自testwiki
跳转到导航 跳转到搜索

Template:Unreferenced 特殊函数的渐近展开式

安格尔函数

AngerJ(3,x)(2)*cos(x+(1/4)*Pi)*(1/x)/(Pi)(35/8)*(2)*cos(x(1/4)*Pi)*(1/x)(3/2)/(π)(945/128)*(2)*cos(x+(1/4)*π)*(1/x)(5/2)/(π)+O((1/x)(7/2))

艾瑞函数

AiryAi(z)(1/2)*exp((2/3)*z(3/2))*(1/z)(1/4)/(π)(5/96)*exp((2/3)*z(3/2))*(1/z)(7/4)/(π)+(385/9216)*exp((2/3)*z(3/2))*(1/z)(13/4)/(π)+O((1/z)(19/4))

  • AiryBi(z)exp((2/3)*z(3/2))*(1/z)(1/4)/(π)+(5/48)*exp((2/3)*z(3/2))*(1/z)(7/4)/(π)+(385/4608)*exp((2/3)*z(3/2))*(1/z)(13/4)/(π)+O((1/z)(19/4))
贝塞尔函数

BesselI(3,x)(1/2)*sqrt(2)*exp(x)*sqrt(1/x)/sqrt(Pi)(35/16)*sqrt(2)*exp(x)*(1/x)(3/2)/sqrt(Pi)+(945/256)*sqrt(2)*exp(x)*(1/x)(5/2)/sqrt(Pi)(3465/2048)*sqrt(2)*exp(x)*(1/x)(7/2)/sqrt(Pi)(45045/65536)*sqrt(2)*exp(x)*(1/x)(9/2)/sqrt(Pi)+O((1/x)(11/2))

BesselJ(3,x)(2)*cos(x+(1/4)*Pi)*(1/x)/(π)(35/8)*(2)*cos(x(1/4)*π)*(1/x)(3/2)/(π)(945/128)*(2)*cos(x+(1/4)*π)*(1/x)(5/2)/(π)+(3465/1024)*sqrt(2)*cos(x(1/4)*π)*(1/x)(7/2)/(π)(45045/32768)*(2)*cos(x+(1/4)*π)*(1/x)(9/2)/(π)+O((1/x)(11/2))

BesselK(3,)(1/2)*sqrt(2)*sqrt(Pi)*exp(x)*sqrt(1/x)+(35/16)*sqrt(2)*sqrt(Pi)*exp(x)*(1/x)(3/2)+(945/256)*sqrt(2)*sqrt(Pi)*exp(x)*(1/x)(5/2)+(3465/2048)*sqrt(2)*sqrt(Pi)*exp(x)*(1/x)(7/2)(45045/65536)*sqrt(2)*sqrt(Pi)*exp(x)*(1/x)(9/2)+O((1/x)(11/2))

Γ函数

BesselY(3,x),sqrt(2)*cos(x(1/4)*Pi)*sqrt(1/x)/sqrt(Pi)+(35/8)*sqrt(2)*cos(x+(1/4)*Pi)*(1/x)(3/2)/sqrt(Pi)(945/128)*sqrt(2)*cos(x(1/4)*Pi)*(1/x)(5/2)/sqrt(Pi)(3465/1024)*sqrt(2)*cos(x+(1/4)*Pi)*(1/x)(7/2)/sqrt(Pi)(45045/32768)*sqrt(2)*cos(x(1/4)*Pi)*(1/x)(9/2)/sqrt(Pi)+O((1/x)(11/2)) Γ(z)(ln(z)1)*z+ln((2)*(π))(1/2)*ln(z)+1/(12*z)1/(360*z3)+1/(1260*z5)1/(1680*z7)+O(1/z9) 误差函数

  • erf(x)1+(1/((π)*x)+1/(2*(π)*x3)3/(4*(π)*x5)+15/(8*(π)*x7)105/(16*(π)*x9)+O(1/x11))/exp(x2)

斐涅尔函数 FresnelC(x)1/2+sin((1/2)*π*x2)/(π*x)cos((1/2)*π*x2)/(π2*x3)3*sin((1/2)*π*x2)/(π3*x5)+15*cos((1/2)*π*x2)/(π4*x7)+105*sin((1/2)*π*x2)/(π5*x9)

  • FresnelS(x)1/2cos((1/2)*π*x2)/(π*x)sin((1/2)*π*x2)/(π2*x3)+3*cos((1/2)*π*x2)/(π3*x5)+15*sin((1/2)*π*x2)/(π4*x7)105*cos((1/2)*π*x2)/(π5*x9)+O(1/x10)