三角形數

来自testwiki
跳转到导航 跳转到搜索

Template:Expand Template:Not

三角形數

一定数目的点或圆在等距離的排列下可以形成一个等邊三角形,這樣的數被稱為三角形數。比如10個點可以組成一个等邊三角形,因此10是一個三角形數:

頭30個三角形數是Template:數列...Template:OEIS

三角数的二倍的平方根取整,是这个三角数的序数。

性質

  • 第n个三角形數的公式是n(n+1)2
  • 第n个三角形數是從1开始的n个自然数的和
  • 所有大于3的三角形數都不是质数
  • Template:Fact
  • 开始的n个立方数的和是第n个三角形數的平方(举例:1 + 8 + 27 + 64 = 100 = 102
  • 所有三角形數的倒数之和是2。
  • 任何三角形數乘以8再加1是一个平方数
  • 三角數的個位數字不可能是2、4、7、9,數字根不可能是2、4、5、7、8。
  • 一部分三角形數(3、10、21、36、55、78……)可以用以下这个公式来表示:n*(2n+1);而剩下的另一部分(1、6、15、28、45、66……)则可以用n*(2n1)来表示。
  • 一种检验正整数x是否三角形数的方法,是计算
    n=8x+112.
    如果n整数,那么x就是第n三角形数。如果n不是整数,那么x不是三角形数。这个检验法是基于恒等式8Tn+1=S2n+1.

特殊的三角形數

  • 55、5,050、500,500、50,005,000……都是三角形數。
  • 第11个三角形數(66)、第1111个三角形數(617,716)、第111,111个三角形數(6,172,882,716)、第11,111,111个三角形數(61,728,399,382,716)都是回文式的三角形數,但第111个(6,216)、第11,111个(61,732,716)和第1,111,111个(617,284,382,716)三角形數不是。
  • 同時為三角形數及普洛尼克數的數(不定方程x(x+1)=y(y+1)2):最小的幾個為0, 6, 210, 7140, 242556, 8239770,……[1][2],對應的x值分別為0, 2, 14, 84, 492, 2870,……Template:OEIS,對應的y值分別為0, 3, 20, 119, 696, 4059,……Template:OEIS

它與其他數的關係

外部連結

Template:Commons category

註釋

Template:NoteFoot

參考資料

Template:Reflist Template:有形數