三次函數

来自testwiki
跳转到导航 跳转到搜索

Template:Translating

有三個實的三式函數圖形,函數和x軸Template:Math有三個交點。此函數有二個臨界點,函數為Template:Math.

三次函數是以下形式的多項式函数

f(x)=ax3+bx2+cx+d,其中 a0

若令Template:Math,可以得到三次方程:

ax3+bx2+cx+d=0

此方程的解即為多項式Template:Math。若所有的系数Template:MvarTemplate:MvarTemplate:Mvar和,Template:Mvar都是实数,則此方程至少會有一個實數根(這對所有奇數Template:Link-en的多項式都成立)。三次函數的所有解都可以用代數函數來表示(這對二次函数四次函數也都成立,但根據阿贝尔-鲁菲尼定理,更高次數的多項式一般來說沒有此特性)。利用三角函數也可以表示出函數的解。此方程的數值解可以用像牛顿法之類的求根算法求得。

三次函數的係數不一定要是複數。三次函數的許多特性,只要係數特征為0或是大於Template:Math就會成立。三次方程的解不一定會和系數同一個域,例如有理系數三次方程的解可能是無理數、甚至是非實數的複數。

相關條目

外部連結

Template:Commons category

Template:多项式 Template:数学分析小条目