绝对赋值

来自testwiki
imported>HTinC232023年4月2日 (日) 01:23的版本 (noteTA(复);調整內鏈)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

Template:Not Template:Cleanup-jargon Template:NoteTA 绝对赋值Hensel引进p进数后发展出的一个概念,常用于单变量代数函数论或者类域论方面的研究。

确切的说,绝对赋值是一个函数,是整环的元素的“大小”的度量。更确切地说,对整环D,一个绝对赋值| x |是从D到实数R,且满足下列条件的任何映射:

  1. |x| ≥ 0,
  2. |x| = 0 当且仅当 x = 0,
  3. |xy| = |x||y|,
  4. |x + y| ≤ |x| + |y|.

从第二条和第三条可以看出,| 1 |=1, | -1| = 1。此外,对于任意正整数 n,

| 1+1+...(n次) | = | −1−1...(n次) | ≤ n.

注意有些英文书绝对赋值叫赋值(valuations)、范数(norm)、量值(magnitude)。

绝对赋值的类型

如果|x+ y|满足更强的属性 |x+ y|≤MAX(|x|,|y|),那麽|x|被称为超度量或非阿基米德绝对赋值,否则就叫阿基米德绝对赋值。每一个整环有至少有一个绝对赋值,称为平凡赋值。这种绝对赋值是:当x= 0时|x|= 0,x≠ 0时|x|= 1,有限域只能有平凡赋值Template:Nowrap begin| x |1 < 1Template:Nowrap end 当且仅当 Template:Nowrap begin | x |2 < 1.Template:Nowrap end,那么这两个绝对赋值相等.如果两个非平凡绝对赋值是相等的,那么一些指数e,有 | x |1e = | x |2。(请注意,不能提高绝对赋值的次幂来获得另一个不同的绝对赋值,例如对实数,一个绝对赋值平方后产生另一个不同值,这种情况就不是一个绝对赋值函数。)绝对赋值可导致到等价类来理解,换言之绝对赋值的等价类,被称为一个素点奥斯特洛夫斯基定理指出,有理数Q中,p-adic数是非平凡绝对赋值,每一个素数p的绝对赋值是有理数Q的素点

q = pn(a/b), 其中a,b是不被p整除的整数。
|pnab|p=pn.

素点的定义就来自上面普通绝对赋值和p的绝对赋值。

几何概念联系

=[x,y] 是在复域的两个变量的多项式环𝕂=(x,y)有理函数,并考虑收敛

f(x,y)=yn=3xnn!{x,y}

t 参数化后解析零点集为Vf,则作为多项式环形式幂级数环

Vf={(x,y)2|f(x,y)=0}={(x,y)2|(x,y)=(t,n=3tn)}

映射v:[x,y] ,则可能得在[x,y]中的多项式 P限制

v(P)=ordt(P|Vf)=ordt(P(t,n=3+tn))P[x,y]

逆映射也可能得到延拓(扩张):

v(P/Q)={v(P)v(Q)P/Q(x,y)*P0(x,y)

形式幂级数环不是多项式环产生的,则容易证明上面逆映射延拓是赋值,在几何上叫曲线一维解析代数簇)的交点。 如:

v(x)=ordt(t)=1v(x6y2)=ordt(t6t62t73t8)=ordt(2t73t8)=7v(x6y2x)=ordt(2t73t8)ordt(t)=71=6

参考

Template:Refbegin

Template:Refend

外部链接

Template:Refbegin

Template:Refend