连续q拉盖尔多项式

来自testwiki
跳转到导航 跳转到搜索
3rd order Continuous q Laguerre polynomials

连续q拉盖尔多项式(Continuous q-Laguerre polynomials)是一个以基本超几何函数定义的正交多项式[1]

Pn(α)(x|q)=(qα+1;q)n(q;q)n3Φ2(qn,qα/2+1/4eiθ,qα/2+1/4*eiθ;qα+1,0|q,q)

极限关系

Q梅西纳-帕拉泽克多项式连续q拉盖尔多项式

Pn(cos(θ+ϕ);qα/2+1/2|q)=q(α/21/4)*n*Pn(α)(cosθ|q)

阿拉-萨拉姆-迟哈剌多项式→连续q拉盖尔多项式

令连续q拉盖尔多项式中x=qx,q→1,即得拉盖尔多项式

验证

3阶连续q拉盖尔多项式: limq1P3(a)=1/6a3xa2+a2+116a+2ax25ax+16x4/3x3+6x2

3阶广义拉盖尔多项式:

L3a(2x)=16(a+1)3*1F1(n,a+1;2x) =1/6a3xa2+a2+116a+2ax25ax+16x4/3x3+6x2

两者显然相等。

图集

CONTINUOUS Q LAGUERRE ABS COMPLEX 3D MAPLE PLOT
CONTINUOUS Q LAGUERRE IM COMPLEX 3D MAPLE PLOT
CONTINUOUS Q LAGUERRE RE COMPLEX 3D MAPLE PLOT
CONTINUOUS Q LAGUERRE ABS DENSITY MAPLE PLOT
CONTINUOUS Q LAGUERRE IM DENSITY MAPLE PLOT
CONTINUOUS Q LAGUERRE RE DENSITY MAPLE PLOT

| |}

参考文献

Template:Q超几何函数

  1. Roelof Koekoek, Peter Lesky, Rene Swarttouw,Hypergeometric Orthogonal Polynomials and Their q-Analogues, p514, Springer