纤维丛

来自testwiki
跳转到导航 跳转到搜索

Template:NoteTATemplate:No footnotes 纖維-{}-束fiber bundlefibre bundle)又稱纖維-{}-叢,在数学上,特别是在拓扑学中,是一个局部看来像直积空间,但是整体可能有不同的结构。每个纤维丛對應一个连续满射

π:EB

E和乘積空間B×F的局部類似性可以用映射 π 來說明。也就是說:在每個E的局部空間 U,都存在一個相同的FF稱作纖維空間),使得 π 限制在 U 上時 與直积空间B×F的投影P:B×FB,P(b,f)=b 相似。(通常會用此滿射:π:EB來表示一個纖維叢,而忽略F

如果E=B×F,也就是一个可以整体上等於乘積空間的丛叫做平凡丛(trivial bundle)。

纤维丛扩展了向量丛(vector bundle),向量丛的主要实例就是流形切丛(tangent bundle)。他们在微分拓扑微分几何领域有着重要的作用。他们也是规范场论的基本概念。

正式定義

一个纤维丛由四元组(E, B, π, F)组成,其中E, B, F拓扑空间π:EB是一个连续满射,满足下面给出的局部平凡(local triviality)条件。B称为丛的基空间(base space),E称为总空间(total space),而F称为纤维(fiber)。映射π称为投影映射.下面我们假定基空间B连通的。

我们要求对于B中的每个點x,存在一个在B中 包含x的开邻域U,並有一個同胚映射φ:π1(U)U×F (顯然U×F是一個乘積空間) ,φ並且要滿足 π(y)=proj1ϕ(y),yπ1(U),也就是下圖是可交换的:

Local triviality condition

其中proj1:U×FU是自然投影而φ:π1(U)U×F是一个同胚(這裡的局部平凡條件有些書會定義為 x=πφ1(x,f),xU,fF)。所有{(Ui,φi)}的集合称为丛的局部平凡化

对于B中每點p,原象(preimage)π1(p)F同胚并称为點p上的纤维。一个纤维丛(E, B, π, F)经常记为

FE  π  B

以引入一个空间的短恰当序列。注意每个纖維叢π:EB都是一个开映射,因为积空间的投影是开映射。所以B有由映射π决定的商拓扑(quotient topology).

一个光滑纤维丛是一个在光滑流形范畴内的纤维丛。也就是,E, B, F都必须是光滑流形且所有上面用到的函数都必须是光滑映射

例子

E=B×F并令π:EB为对第一个因子的投影,则EB上的丛。这里E不仅是局部的积而且是整体的积。任何这样的纤维丛称为平凡丛

莫比乌斯带是圆上的非平凡丛。

最简单的非平凡丛的例子可能要算莫比乌斯带(Möbius strip)。莫比乌斯带是一个以为基空间B并以线段为纤维F的丛。对于一点xB的邻域是一段圆弧;在图中,就是其中一个方块的长。原象π1(U)在图中是个(有些扭转的)切片,4个方块宽一个方块长。同胚φU的原象映到柱面的一块:弯曲但不扭转。

相应的平凡丛B×F看起来像一个圆柱,但是莫比乌斯带有个整体上的扭转。注意这个扭转只有整体上才能看出来;局部看来莫比乌斯带和圆柱完全一样(在其中任何一个竖直的切一刀会产生同样的空间)。

一个类似的非平凡丛是克莱因瓶,它可以看作是一个“扭转”的圆在另一个圆上的丛。相应的平凡丛是一个环,S1×S1

一个覆盖空间是一个以离散空间为纤维的纤维丛。

纤维丛的一个特例,叫做向量丛,是那些纤维为向量空间的丛(要成为一个向量丛,丛的结构群—见下面—必须是一个线性群)。向量丛的重要实例包括光滑流形的切丛余切丛

另一个纤维丛的特例叫做主丛。更多的例子参看该条目。

一个球丛是一个纤维为n維球面的纤维丛。给定一个有度量的向量丛(例如黎曼流形的切丛),可以构造一个相应的单位球丛,其在一点x的纤维是所有Ex的单位向量的集合.

截面

Template:Main 纤维丛的截面(section或者cross section)是一个连续映射f:BE使得π(f(x))=x对于所有B中的x成立。因为丛通常没有全局有定义的截面,理论的一个重要作用就是检验和证明他们的存在性。这导致了代数拓扑示性类理论。

截面经常只被局部的定义(特别是当全局截面不存在时)。纤维丛的局部截面是一个连续映射f:UE其中U是一个B中的开集π(f(x))=x对所有U中的x成立。若(U,φ)是一个局部平凡化图,则局部截面在U上总是存在的。这种截面和连续映射UF有1-1对应。截面的集合组成一个(sheaf)。

结构群和转移函数

纤维丛经常有一个对称描述重叠的图之间的相容条件。特别的,令G为一个拓扑群,它连续的从左边作用在纤维空间F上。不失一般性的,我们可以要求G有效的作用在F上,以便把它看成是F同胚群。纖維叢的一个G-图册E, B, π, F)是之前定義過的局部平凡化並且滿足:对任何两个重叠的局部平凡化中的元素也就是图(Ui,φi)(Uj,φj)UiUj,則函数

φiφj1:(UiUj)×F(UiUj)×F

是由以下方式给出:

φiφj1(x,ξ)=(x,tij(x)ξ),xUiUj,ξF

其中 tij:UiUjG 是一个称为转移函数(transition function)的连续映射。两个G-圖冊是等價的如果他们的聯集也是G-圖冊。一个G-丛是有G-圖冊等价类的纤维丛。群G稱为该丛的结构群(structure group)。

在光滑范畴中,一个G-丛是一个光滑纤维丛,其中G是一个李群而相应的在F上的作用是光滑的并且变换函数都是光滑映射。

转移函数tij满足以下条件

  1. tii(x)=1
  2. tij(x)=tji(x)1
  3. tik(x)=tij(x)tjk(x)

第三个条件用到三個相交的 UiUjUk上叫做上链条件(cocycle condition,Čech上同调)。

一个主丛是一个G-丛,其纤维可以认为是G本身,并且有一个在全空间上的G的右作用保持纤维不变。

参见

外部链接

参考

  • Norman Steenrod, The Topology of Fiber Bundles, Princeton University Press (1951). ISBN 0-691-00548-6.
  • David Bleecker, Gauge Theory and Variational Principles, Addison-Wesley publishing, Reading, Mass (1981). ISBN 0-201-10096-7. See chapter one.

Template:Authority control