零假设

来自testwiki
跳转到导航 跳转到搜索

Template:Expand language Template:NoteTA

一張包含虛無假說與對立假說兩個曲線的示意圖,兩常態分布有不同的期望值與相同的變異數

推論統計學中,零假设Template:Lang-en,又译-{zh-cn:虚无假设、原假设; zh-tw:零假說;}-,符号:H0)是做统计检验时的一类假說

零假设的内容一般是希望能证明为错误的假设,与零假设相对的是對立假說,即希望通过证伪零假设而证明正确的另一种假说。从数学上来看,零假设和备择假设的地位是相等的,但是在统计学的实际运用中,常常需要强调一类假设为应当或期望实现的假设,例如在相关性检验中,一般会取“两者之间无关联”作为零假设,而在独立性检验中,一般会取“两者之间非獨立”作为零假设。

如果一个统计检验的结果拒绝(reject)零假设(结论不支持零假设),而实际上真实的情况属于零假设,那么称这个检验犯了型一錯誤。反之,如果检验结果支持零假设,而实际上真实的情况属于备择假设,那么称这个检验犯了型二錯誤。通常的做法是,在保持第一类错误出现的机会在某个特定水平上的时候(即显著性差异值或α值),尽量减少第二类错误出现的概率。

相关条目

参考来源

延伸閱讀

Template:Refbegin

  • Template:Cite book
  • Template:Cite journal The application of significance testing in this paper is an outlier. Tests to find a null hypothesis? Not trying to show significance, but to find interesting cases?
  • Template:Cite journal Directed tests combine the attributes of one-tailed and two-tailed tests. "...directed tests should be used in virtually all applications where one-sided tests have previously been used, excepting those cases where the data can only deviate from H0, in one direction."

Template:Refend

外部連結

Template:統計學