Template:NoteTA
阿廷模是抽象代數中一類滿足降鏈條件的模。
定義
以下固定一個環 。設 為左 -模,當 滿足下列,則稱 為阿廷模:
- 對所有由 的子模構成的降鏈 ,存在 使得 ;換言之,此降鏈將會固定。
若將上述定義中的左模換成右模,可得到右阿廷模的定義。
性質
- 若 是 -代數,任何在 上有限維的 -模都是阿廷模。
- 若 ,且 與 皆為阿廷模,則 為阿廷模。
- 阿廷模的子模與商模皆為阿廷模。
- 阿廷模與環的性質差異之一,在於有非諾特模的阿廷模,以下將給出一個例子:
- 令 ,視之為 -模。升鏈
- 不會固定,因此 並非諾特模。然而我們知道 的任何子模皆形如 ,由此可知任何降鏈皆可寫成
- 其中 ,故將固定,於是 是阿廷模。
文獻
- Serge Lang, Algebra (2002), Graduate Texts in Mathematics 211, Springer. ISBN 0-387-95385-X
Template:ModernAlgebra