胡列维茨定理
跳转到导航
跳转到搜索
在数学中,胡列维茨定理是代数拓扑的一个基本结论。定理通过“胡列维茨同态”将同伦论与同调论联系起来,是庞加莱此前部分结论的推广。胡列维茨定理以Template:Link-en命名。
定理陈述
绝对版本
对于任意空间 和任意正整数 ,都存在群同态(构造见本小节末尾)
称为从 阶同伦群到 阶(整系数)同调群的胡列维茨同态。当 且 道路连通时,胡列维茨同态等价于标准的阿贝尔化映射
胡列维茨定理声明,若 是(n -1)-连通空间,那么对于所有 ,胡列维茨同态都是群同构(当 )或阿贝尔化(当 )。特别地,定理说明第一同伦群(即基本群)的阿贝尔化同构于第一同调群:
因此,如果 道路连通且 是完美群,那么 的第一同调群为零。
此外,当 是(n -1)-连通时(),胡列维茨同态 都是满同态(满射)。
胡列维茨同态由如下方式给定:设 为标准生成元,那么胡列维茨映射将同伦类 映射到 。
相对版本
三元版本
单纯集合版本
拓扑空间的胡列维茨定理对于n-连通、满足阚条件的单纯集合也有对应陈述。[1]
有理胡列维茨定理
设 为单连通拓扑空间,并对于所有 满足 。那么胡列维茨映射
参考资料
- ↑ Template:Citation, III.3.6, 3.7
- ↑ Template:Citation
- ↑ Template:Citation