李維常數

来自testwiki
跳转到导航 跳转到搜索

李維常數Template:Lang-en,有時被稱作辛欽–李維常數Template:Lang-en)是和連分數分母的漸近收斂特性有關的一個常數[1]。在1935年時蘇俄的數學家亞歷山大·辛欽證明[2]幾乎所有實數的分母連分數qn的漸近特性都滿足下式:

limnqn1/n=γ

其中的常數γ在1936年由法國數學家保羅·皮埃爾·萊維求得為[3]

γ=eπ2/(12ln2)=3.275822918721811159787681882.

李維常數有時會指π2/(12ln2)(上述常數的自然對數),數值約為1.1865691104….

李維常數的常用對數約為0.51532941…,是布洛赫定理極限倒數的一半。

相關條目

參考資料

Template:Reflist

外部連結

  1. Template:Citation
  2. [Reference given in Dover book] "Zur metrischen Kettenbruchtheorie," Compositio Matlzematica, 3, No.2, 275–285 (1936).
  3. [Reference given in Dover book] P. Levy, Théorie de l'addition des variables aléatoires, Paris, 1937, p. 320.