Template:微积分学以下的列表列出了许多函数的导数。f 和g是可微函数,而别的皆为常数。用这些公式,可以求出任何初等函数的导数。
(sinx)′=limh→0sin(x+h)−sinxh=limh→0sinxcosh+cosxsinh−sinxh=limh→0(sinxcosh−1h+cosxsinhh)=cosx
(cosx)′=limh→0cos(x+h)−cosxh=limh→0cosxcosh−sinxsinh−cosxh=limh→0(cosxcosh−1h−sinxsinhh)=−sinx
(tanx)′=(sinxcosx)′=(sinx)′cosx−sinx(cosx)′cos2x=cos2x+sin2xcos2x=1cos2x=sec2x
(cotx)′=(cosxsinx)′=(cosx)′sinx−cosx(sinx)′sin2x=−sin2x−cos2xsin2x=−1sin2x=−csc2x
(secx)′=(1cosx)′=sinxcos2x=secxtanx
(cscx)′=(1sinx)′=−cosxsin2x=−cscxcotx
(arcsinx)′=1cos(arcsinx)⇔sin(arcsinx)=x⇔cos(arcsinx)(arcsinx)′=1=11−sin2(arcsinx)=11−x2 (|x|<1)
(arccosx)′=1−sin(arccosx)⇔cos(arccosx)=x⇔−sin(arccosx)(arccosx)′=1=−11−cos2(arccosx)=−11−x2 (|x|<1)
(arctanx)′=1sec2(arctanx)⇔tan(arctanx)=x⇔sec2(arctanx)(arctanx)′=1=11+tan2(arctanx)=11+x2
(arccotx)′=1−csc2(arccotx)⇔cot(arccotx)=x⇔−csc2(arccotx)(arccotx)′=1=−11+cot2(arccotx)=−11+x2
(arcsecx)′=1sec(arcsecx)tan(arcsecx)⇔sec(arcsecx)=x⇔sec(arcsecx)tan(arcsecx)(arcsecx)′=1=1|x|sec2(arcsecx)−1=1|x|x2−1 (|x|>1)
(arccscx)′=1−csc(arccscx)cot(arccscx)⇔csc(arccscx)=x⇔−csc(arccscx)cot(arccscx)(arccscx)′=1=−1|x|csc2(arcsecx)−1=−1|x|x2−1 (|x|>1)
dΓ(x)dx=∫0∞e−ttx−1lntdt
Template:Notefoot