坎宁安函数

来自testwiki
跳转到导航 跳转到搜索
Cunningham function Maple animation

坎宁安函数又称为皮尔逊-坎宁安函数(Pearson-Cunningham function)是英国数学家坎宁安在1908年首先研究的特殊函数,[1],定义如下[2]

ωm,n(x)=ex+πi(m/2n)Γ(1+nm/2)U(m/2n,1+m,x).

其中U为特里科米函数

坎宁安在是在用多變數擴展的埃奇沃斯級數,依機率密度函數來近似機率密度函數時用到坎宁安函数,坎宁安函数和一維或多維常係數的擴散方程有關[1]

坎宁安函数是下列微分方程的解

xX+(x+1+m)X+(n+12m+1)X.

与其他函数的关系

  • ωm,n(x)=exp(x+(1/2*I)*π*mI*π*n)*Γ(m)*HeunB(2*m,0,2+4*n,0,(x))Γ(1+n(1/2)*m)*xm*Γ((1/2)*mn)

+exp(x+(1/2*I)*Pi*mI*π*n)*Γ(m)*HeunB(2*m,0,2+4*n,0,(x))Γ(1+n(1/2)*m)*Γ((1/2)*mn)

  • ωm,n=WhittakerM(0,1/2,x+I*π*((1/2)*mn))*exp((1/2)*x+(1/2*I)*π*((1/2)*mn))*WhittakerW(1/2+n,(1/2)*m,x)*exp((1/2)*x)Γ(1+n(1/2)*m)*x(1/2+(1/2)*m)

级数展开

ω0.5,0.5(x)=(1/80640)*(120960*(2)*Γ(3/4)2*(x)141120*(2)*Γ(3/4)2*x(3/2)+77616*(2)*Γ(3/4)2*x(5/2)27720*(2)*Γ(3/4)2*x(7/2)+7315*(2)*Γ(3/4)2*x(9/2)+(141120*I)*(2)*Γ(3/4)2*x(3/2)+(27720*I)*(2)*Γ(3/4)2*x(7/2)(100800*I)*π*x(7315*I)*(2)*Γ(3/4)2*x(9/2)(77616*I)*(2)*Γ(3/4)2*x(5/2)40320*π+(75600*I)*π*x2+100800*π*x+(40320*I)*π75600*π*x2(120960*I)*(2)*Γ(3/4)2*(x)+32760*π*x3(32760*I)*π*x39945*π*x4+(9945*I)*π*x4+80640*π(3/2)*O(x(9/2))*(x))/(π(3/2)*(x))

腳註

Template:Reflist

参考文献

Template:Math-stub

  1. 1.0 1.1 Template:Harvtxt
  2. Cunningham, E. (1908), "The ω-Functions, a Class of Normal Functions Occurring in Statistics", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character (The Royal Society) 81 (548): 310–331, doi:10.1098/rspa.1908.0085, ISSN 0950-1207, JSTOR 93061