卡咯提的-昆达利尼函数

来自testwiki
跳转到导航 跳转到搜索
Carotid-Kundalini function

卡咯提的-昆达利尼函数(Carotid-Kundalili Function)定义如下[1]

K(n,x)=cos(n*x*arccos(x))

与其他特殊函数的关系

  • K(n,x)=(1/2*I)*(1+exp(I*(2*n*x*arccos(x)+Pi)))exp((1/2*I)*(2*n*x*arccos(x)+Pi))
  • K(n,x)=(nxcos1(x)+π/2)KummerM(1,2,I(2nxarccos(x)+π))exp(I(2nxarccos(x)+2π/2))
  • nx2𝐻𝑒𝑢𝑛𝐵(2,0,0,0,21/2i(2nx(1/2πx𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)11x2)+π))𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)11x2(e1/2i(nxπ1x2+2nx2𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)π1x2)11x2)1+1/2π(nx+1)𝐻𝑒𝑢𝑛𝐵(2,0,0,0,21/2i(2nx(1/2πx𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)11x2)+π))(e1/2i(nxπ1x2+2nx2𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)π1x2)11x2)1

K(n,x)=i(2nxarccos(x)+π)𝑊𝑖𝑡𝑡𝑎𝑘𝑒𝑟𝑀(0,1/2,i(2nxarccos(x)+π))4nxarccos(x)+2π

函数展开

K(n,x)1(1/8)*n2*π2*x2+(1/2)*n2*π*x3+((1/384)*n4*π4(1/2)*n2)*x4+((1/48)*n4*π3+(1/12)*n2*π)*x5+O(x6)

帕德近似

帕德近似:

K(n,x){1800.0+(36.4n4+516.0)x+(46.3n41830.0n271.0)x2+(1820.0n2+37.4n644.3n4+81.9)x31800.0+(36.4n4+516.0)x+(46.3n4+368.0n271.0)x2+(7.48n644.3n4363.0n2+81.9)x3}

外部链接

参考文献

  1. Weisstein, Eric W. "Carotid-Kundalini Function." From MathWorld--A Wolfram Web Resource. -{R|http://mathworld.wolfram.com/Carotid-KundaliniFunction.html}- Template:Wayback