仿射q克拉夫楚克多项式

来自testwiki
跳转到导航 跳转到搜索

仿射q克拉夫楚克多项式是以基本超几何函数定义的正交多项式[1]


Knaff(qx;p;N;q)=2ϕ1(qn0qxpqqN;q,q)

n=0,1,2,N

极限关系

Q哈恩多项式→ 量子Q克拉夫楚克多项式:

limaQn(qx;a;p,N|q)=Knqtm(qx;p,N;q)

仿射q克拉夫楚克多项式→ 小q拉盖尔多项式

lima1=Knaff(qxN;p,N|q)=pn(qx;p,q)

图集

AFFINE Q-KRAWTCHOUK POLYNOMIALS ABS COMPLEX 3D MAPLE PLOT
AFFINE Q-KRAWTCHOUK POLYNOMIALS IM COMPLEX 3D MAPLE PLOT
AFFINE Q-KRAWTCHOUK POLYNOMIALS RE COMPLEX 3D MAPLE PLOT
AFFINE Q-KRAWTCHOUK POLYNOMIALS ABS DENSITY MAPLE PLOT
AFFINE Q-KRAWTCHOUK POLYNOMIALS IM DENSITY MAPLE PLOT
AFFINE Q-KRAWTCHOUK POLYNOMIALS RE DENSITY MAPLE PLOT

参考文献

  1. Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p501,Springer,2010

Template:Q超几何函数