三十二元數

来自testwiki
跳转到导航 跳转到搜索

Template:Infobox

在數學中,三十二元數Template:Lang-en)是指32個維度的代數系統[1]。較常見的定義是透過將十六元數套用凱萊-迪克森構造生成的32維代數系統[2]。這種代數系統不是可除代數,且不具備交換律和結合律。[3]

性質

凱萊-迪克森構造生成的三十二元數本身包含了十六元數、八元數、四元數、複數和實數,也就是說實數包含於複數、複數包含於四元數、四元數包含於八元數、八元數包含於十六元數、十六元數包含於三十二元數。

𝕆𝕊𝕋

其中𝕋為三十二元數。後面仍能持續推廣為六十四元數、一百二十八元數等。[3]

乘法表

高維超複數的乘法表可以透過低維超複數的乘法表推廣以產生,因此三十二元數的乘法表有一部份與十六元數、八元數的乘法表相同,其餘部分能透過推廣的方式計算得出,甚至六十四元數、一百二十八元數的乘法表也皆是已知的。[4]這些乘法表中的元素通常是單位,可稱為基元,基元的數量則決定了超複數的維度[5]Template:Rp

三十二元數的乘法表十分龐大,可以參見文獻中的附表[4][3]。具體執行三十二元數乘法的過程需要1024次實數乘法和992次實數加法。[6]

高維代數結構

三十二元數之上還有六十四元數、一百二十八元數等,其維數皆是二的次方。[4]

六十四元數

六十四元數共有1個實元素和63個虛元素單位。其乘法表的結構可以以這63個虛元素單位作為點,形成651個三元組。[7]如同八元數Template:Link-en7個虛元素單位構成7條線,六十四元數的651個三元組都可以看做一條線,每條線通過3個頂點,每個點連接31條線,並同構於PG(5,2)。[8]Template:Rp

參見

Template:Wiktionary

參考文獻

Template:Reflist Template:Navbox