Template:NoteTATemplate:Sidebar
求和符号(Template:Lang-en;符號:,讀作:sigma),是欧拉于1755年首先使用的一个数学符号。这个符号是源自于希腊文Template:Lang(增加)的字头,Σ正是σ的大写。
求和指的是將給定的數值相加的過程,又稱為加總。求和符號常用來簡化有多個數值相加的數學表達式。
假設有個數值,則這個數值的總和可表示為。
用等式來呈現的話就是。
舉例來說,若有4個數值:,則這4個數值的總和為:
在數學中,求和是任何類型數字的序列相加,稱為加數或加數;結果是它們的總和或總數。除了數字之外,也可以對其他類型的值求和:函數、向量、矩陣、多項式,以及通常在其上定義了表示為“+”的運算的任何類型的數學物件的元素。
無窮序列的總和稱為級數,它們涉及極限的概念,本條目不予考慮。
顯式序列的總和表示為一連串的加法。例如,[1, 2, 4, 2] 的和記為 1 + 2 + 4 + 2,得到 9,即 1 + 2 + 4 + 2 = 9。因為加法是結合可交換的,所以有不需要括號,無論加法的順序如何,結果都是一樣的。只有一個元素的序列的總和會產生這個元素本身。按照慣例,空序列(沒有元素的序列)的總和結果為 0。
求和方法
- 裂項法:利用求出。
- 錯位相減法:透過兩個求和式的相減化簡求和數列的求和方法。
- 倒序求和:對於有對稱中心的函數首尾求和[1][2]
- 逐項求導:可從推導出[3]
- 阿貝爾變換:
含多項式求和公式
以下設p為多項式,
是對一個多項式求和,自然數方冪和、等幂求和、等差數列求和都屬于對多項式求和。
- 帕斯卡矩陣形式
- [4]
- 差分變換形式
- [5]
Template:Collapsible list
當為多項式,易求高階導數時,有封閉型和式
- [6]
-
- 有限和有封閉型和式
- 當p為常數時,是對等比數列求和,當p為一次多項式時,是對差比數列求和。
- [4]
Template:Collapsible list
-
- [7]
,其中為調和數或調和級數
組合數求和公式
Template:Main
一阶求和公式
- [参 1]
Template:Main
二阶求和公式
- [参 3]
Template:Main
范德蒙恒等式與超幾何函數有關係:
三阶求和公式
Template:Main
范德蒙恒等式與廣義超幾何函數有關係:
定積分判斷總和界限
當在[a,b]單調遞增時:
當在[a,b]單調遞減時:
- [8]
求和函数
以为例:
syms k n;symsum(k^9,k,1,n)
In[1]:= Sum[i^9, {i, 1, n}]
Out[1]:=
参考资料
Template:Reflist
Template:Reflist
Template:Wikibooks
引用错误:名称为“参”的group(分组)存在<ref>标签,但未找到对应的<references group="参"/>标签