考拉兹猜想
Template:NoteTA Template:Unsolved 考拉兹猜想(Template:Lang-en),又称为奇偶归一猜想、3n+1猜想、冰雹猜想、角谷猜想、哈塞猜想、乌拉姆猜想或叙拉古猜想,[1]是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。
埃尔德什·帕尔在谈到考拉兹猜想时说:“数学还没准备好应对这样的问题。”[2]Template:Le指出,考拉兹猜想“是个异常困难的问题,完全超出了当今数学的范围”。[3]
问题表述





对任意正整数进行以下运算;
- 若为偶数,则除以2;
- 若为奇数,则将其×3再加1。
这可以定义为模算术函数Template:Mvar:
现重复执行该运算,形成一个序列,从任意正整数开始,把每步的结果作为下一步的输入。可记作: (即:Template:Math是递归Template:Mvar次应用于Template:Mvar的Template:Mvar值;Template:Math)。
考拉兹猜想是:所有正整数最终都会到达1,即存在i使得Template:Math。
若猜想为假,表示存在某个初值产生一个不含1的循环数列,或朝無窮大發散的數列,目前尚未发现这样的数列。
最小的使Template:Math的Template:Mvar称为Template:Mvar的停止时间,相似地,使Template:Math的最小的Template:Mvar称为Template:Mvar的总停止时间。[4]若索引Template:Mvar或Template:Mvar的其中一个不存在,就称停止时间或总停止时间分别不存在。
考拉兹猜想认为,所有Template:Mvar的总停止时间都是有限的,即所有Template:Math都有有限的停止时间。
只要Template:Mvar是奇数,Template:Math就是偶数,所以可以使用考拉兹函数的“快捷”形式: 这个定义可在过程整体动态不变的前提下,获得较小的停止时间和总停止时间值。
经验数据
取一个正整数:
- 如 = 6,根据上述数式,得出序列6, 3, 10, 5, 16, 8, 4, 2, 1。(步驟中最高的數是16,共有8個步驟)
- 如 = 11,根据上述数式,得出序列11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1。(步驟中最高的數是52,共有14個步驟)
- 如 = 27,根据上述数式,得出序列 {27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1}(步驟中最高的數是9232,共有111個步驟)Template:OEIS
奇偶归一猜想称,任何正整数,经过上述计算步骤後,最终都会得到1。

數目少於1萬的,有著最高步驟數的是6171,共有261個步驟;數目少於10萬的,有著最高步驟數的是77031,共有350個步驟;數目少於100萬的,有著最高步驟數的是837799,共有524個步驟;數目少於1億的,有著最高步驟數的是63728127,共有949個步驟;數目少於10億的,有著最高步驟數的是670617279,共有986個步驟。
总停止时间长于任何较小起始值的数字构成如下序列:
- 1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, ... Template:OEIS
最大轨迹点大于任何较小起始值的起始值构成如下序列
- 1, 2, 3, 7, 15, 27, 255, 447, 639, 703, 1819, 4255, 4591, 9663, 20895, 26623, 31911, 60975, 77671, 113383, 138367, 159487, 270271, 665215, 704511, ... Template:OEIS
Template:Mvar达到1的步数为
- 0, 1, 7, 2, 5, 8, 16, 3, 19, 6, 14, 9, 9, 17, 17, 4, 12, 20, 20, 7, 7, 15, 15, 10, 23, 10, 111, 18, 18, 18, 106, 5, 26, 13, 13, 21, 21, 21, 34, 8, 109, 8, 29, 16, 16, 16, 104, 11, 24, 24, ... Template:OEIS
总停止时间最长,且
- 小于10的是9,经历19步;
- 小于100的是97,经历118步;
- 小于1000的是871,经历178步;
- 小于104的是6171,经历261步;
- 小于105的是Template:Val,经历350步;
- 小于106的是Template:Val,经历524步;
- 小于107的是Template:Val,经历685步;
- 小于108的是Template:Val,经历949步;
- 小于109的是Template:Val,经历986步;
- 小于1010的是Template:Val,经历1132步;[5]
- 小于1011的是Template:Val,经历1228步;
- 小于1012的是Template:Val,经历1348步;……[6] Template:OEIS
这些数字也是具有指定步数的最低数字,但不一定是唯一的,例如经历1132步的有Template:Val,还有Template:Val。
与位数(以2为基)相关的总停止时间最小的起始值是2的幂,因为Template:Math经历Template:Mvar次减半才达到1,且永远不会增加。
可视化
-
前1000个数的轨迹的有向图
-
Template:Mvar轴表示初始数,Template:Mvar轴表示到1过程中到达的最大值。此图显示了压缩的Template:Mvar轴:有些Template:Mvar值产生的轨迹最大值可达Template:Val(Template:Math)
-
与左图相同,但采用对数坐标,显示了所有Template:Mvar值。图中间的第一条粗线对应27处的尖端,在9232到达最大值
-
小于20步的所有数集合
-
前1亿个数到达1的迭代次数
支持论据
虽然猜想尚未得到证实,但大多数数学家都认为它是真的,因为实验证据和启发式论证都支持这一猜想。
实验证据
截至2020年,已经用计算机验证了268 ≈ Template:Val之前的所有初始值,最终都以周期为3的循环Template:Math作结。[7]
显然,这不能证明猜想对所有初始值都正确,因为非常大的正整数可能会出现反例,例如希爾伯特-波利亞猜想的反例。不过,这种验证可能会产生其他影响,例如我们可以推导出关于非平凡周期和结构形式的额外约束。[8][9][10]Template:Clarify
概率启发式
若只考虑考拉兹过程产生序列中的奇数,那么每个奇数平均都是前一个的Template:Sfrac。Template:Refn(更准确地说,结果的几何均值是Template:Sfrac。)这就产生了启发式论证:每个考拉兹序列从长期来看都倾向于减小,虽然这不能证明不存在其他的周期。这个论证不是证明,因为它假定考拉兹序列是由不相关的概率事件组合而成的。(确实严格证明了考拉兹过程的2进数推广在几乎所有初始值的每个乘法步骤都对应两个除法步骤)
停止时间
正如Riho Terras证明,几乎每个正整数都有有限的停止时间。[11]换句话说,几乎每个考拉兹序列都会到达严格低于其初值的点。该证明基于奇偶向量的分布,并利用了中心极限定理。
2019年,陶哲轩利用概率密度函数改进了这一结果,证明几乎所有(对数密度意义上的)考拉兹轨道都在起点的任意发散函数之下。《量子杂志》在回应这项工作时写道,陶哲轩“获得了几十年来关于考拉兹猜想的最重要成果之一”。[12][13]
下界
Krasikov & Lagarias在一份计算机辅助证明中证明,对所有足够大的Template:Mvar,区间Template:Math中最终达到1的整数个数至少等于Template:Math。[14]
循环
在这一节中,考虑考拉兹函数的快捷形式 循环是由不同正整数组成的序列Template:Math,其中Template:Math, Template:Math, ..., Template:Math。
唯一已知的循环是周期为2的Template:Math,称作平凡循环。
周期长度
非平凡周期的长度至少为Template:Val。若能证明对所有小于的正整数,考拉兹序列都收敛到1,则这个下界就会提高到Template:Val。[15][9]实际上,Eliahou (1993)证明了任何非平凡循环的周期Template:Mvar的形式为 其中Template:Mvar、Template:Mvar、Template:Mvar为非负整数,Template:Math,Template:Math。这个结果是基于Template:Math的连分数展开。[9]
Template:Mvar循环是可分为Template:Math段连续子列的循环,每个子列由奇数的递增序列和偶数的递减序列组成。[10]例如,若循环由1个奇数的递增序列和偶数的递减序列组成,则称为1循环。
Steiner (1977)证明,除平凡循环Template:Math外不存在其他1循环。[16]Simons (2005)用Steiner的方法证明没有2循环。[17] Simons & de Weger (2005)将这一证明推广到68循环,即Template:Math以下不存在Template:Mvar循环。[10]Hercher进一步推广了这一方法,证明不存在Template:Math的k循环。[15]随着计算机穷举搜索的继续,可能会排除更大的Template:Math值。
猜想的其他表述
反向

还有另一种方法可证明这猜想:采用自下而上的方法构造所谓考拉兹图,由逆关系定义:
因此,与其证明所有正整数都指向1,我们可以尝试证明1指向所有正整数。对任意整数Template:Mvar,Template:Math当且仅当Template:Math。等价地,Template:Math当且仅当Template:Math。根据猜想,除了1-2-3循环之外,这个逆关系构成一棵树。
函数Template:Mvar的关系式Template:Math可用“快捷”关系式Template:Math代替,则考拉兹图由逆关系定义:
对任意整数Template:Mvar,Template:Math当且仅当Template:Math。等价地,Template:Math当且仅当Template:Math。根据猜想,除了1-2循环之外,这个逆关系构成一棵树。
或者,把Template:Math换成Template:Math,其中Template:Math、Template:Math是整除Template:Math的最大的2的幂,得到的函数Template:Mvar将从奇数映射到奇数。现假设对某个奇数Template:Mvar,进行Template:Mvar次运算会得到数字1(即Template:Math)。则数字Template:Mvar在二进制中可写为字符串Template:Math,其中每个Template:Math都是从Template:Math的表示中提取的有限连续字符串。[18]因此,Template:Mvar的表示包含了除Template:Math的重复尾数,每个重复尾数可以选择旋转,再复制到有限位数。只有二进制会出现这种情况。[19]根据猜想,每个以“1”结尾的二进制字符串Template:Mvar都可用这种形式表示(可以添加或删除Template:Mvar的前导0)。
作为以二进制计算的抽象机
考拉兹函数的重复应用可用处理比特串的抽象机表示。它会对任何奇数执行以下3步,直到只剩一个1:
- 在二进制数的(右)端加Template:Mono(得到Template:Math);
- 用二进制加法将其加到原数上(Template:Math);
- 去掉所有尾数Template:Mono(反复除以2直到结果为奇数)。
示例
起始值为7,以二进制写作Template:Mono。得到的考拉兹序列为:
111
1111
10110
10111
100010
100011
110100
11011
101000
1011
10000
作为奇偶序列
本节中,考虑略微修改的考拉兹函数
这样做是因为Template:Mvar为奇数时,Template:Math总是偶数。
若Template:Math表示某数的奇偶性,例如Template:Math、Template:Math,则可定义一个数Template:Mvar的考拉兹奇偶序列Template:Math,其中Template:Math;Template:Math。
执行Template:Math还是Template:Math的哪种运算取决于奇偶性,序列与运算序列相同。
利用Template:Math的这种形式,可证明两个数Template:Mvar、Template:Mvar的奇偶性序列在前Template:Mvar项上一致,当且仅当Template:Mvar、Template:Mvar是等价的模Template:Math。这意味着每个数都能通过奇偶性序列唯一识别,此外若存在多个考拉兹循环,则它们对应的奇偶性循环也一定是不同的。[4][11]
对数Template:Math应用Template:Mvar次Template:Mvar函数,得到Template:Math,其中Template:Mvar是对Template:Mvar应用Template:Mvar次Template:Mvar函数的结果,Template:Mvar是在序列中增加的次数。例如,对于Template:Math,1依次上升到2、1、2、1,最后上升到2时有3次上升,因此结果是Template:Math;对于Template:Math只有一次上升:1、2、1,所以结果是Template:Math。Template:Mvar是Template:Math时,会有Template:Mvar次上升,结果是Template:Math。3的幂乘Template:Mvar与Template:Mvar无关,只取决于Template:Mvar的行为,这使我们可以预测,某些形式的数在迭代一定次数后总会到达更小的数字,例如Template:Math在应用两次Template:Mvar后会变成Template:Math,Template:Math应用4次会变成Template:Math。不过,这些小数是否继续下降到1则取决于Template:Mvar的值。
作为标记系统
对于形式为
的考拉兹函数,考拉兹序列可通过2标记系统计算,生成规则为
系统中,正整数Template:Mvar由包含Template:Mvar份Template:Mvar的字符串表示,标签操作的迭代在热河长度小于2的词上停止(改编自De Mol)。
考拉兹猜想等价地指出,以任意有限的Template:Mvar字符串作为初值,标记系统最终会停止。
推广
在所有整数上迭代
考拉兹猜想的扩展是包含所有整数,而不仅仅是正整数。撇开无法从外部进入的0→0循环,已知循环共有4个,所有非零整数似乎都会在Template:Mvar的迭代下陷入其中:
奇数值用大粗体表示,每个循环以其绝对值最小的成员(总是奇数)为先列出。
| 循环 | 奇数值循环长度 | 全循环长度 |
|---|---|---|
| 1 → 4 → 2 → 1 ... | 1 | 3 |
| −1 → −2 → −1 ... | 1 | 2 |
| −5 → −14 → −7 → −20 → −10 → −5 ... | 2 | 5 |
| −17 → −50 → −25 → −74 → −37 → −110 → −55 → −164 → −82 → −41 → −122 → −61 → −182 → −91 → −272 → −136 → −68 → −34 → −17 ... | 7 | 18 |
推广的考拉兹猜想:在Template:Mvar的迭代下,所有整数最终都会落入上述4个循环或0→0循环中的一个。
奇分母有理数的迭代
考拉兹映射可扩展到奇分母的有理数。根据分子的奇偶,可将有理数分奇偶,然后映射公式与域为整数时完全相同:偶有理数除以2,奇有理数乘以3再加1。一个密切相关的事实是,考拉兹猜想可推广到2进整数,其中包含作为子环的奇分母有理数环。
运用“快捷”函数时,已知任何周期的奇偶性序列都恰好由一个有理数生成。[20]相反,有人猜想,每个奇分母有理数都有最终循环的奇偶性序列(周期性猜想[4]))。
若奇偶循环长为Template:Mvar,且在Template:Math处包含了Template:Mvar次奇数,那么立即周期性地产生奇偶循环的唯一有理数: Template:NumBlk
例如,奇偶循环Template:Nowrap长度为7,4个奇数项分别位于0、2、3、6处。它由分数 因为后者可产生有理循环
Template:Nowrap的任何循环排列都与上述分数之一相关。例如,循环Template:Nowrap可由下面的分数产生
为实现一一对应,奇偶循环应是不可还原的,即无法分割成相同的子循环。例如,奇偶循环Template:Nowrap及其子循环Template:Nowrap在化为最小项时与相同的分数Template:Sfrac相关。
这时,假设考拉兹猜想成立,就意味着Template:Nowrap、Template:Nowrap是唯一由正整数(1、2)产生的奇偶性循环。
若有理数的奇分母Template:Mvar不是3的倍数,则所有迭代数都将有相同的分母,通过应用考拉兹函数的Template:Math推广[21],可得考拉兹函数
2进数推广
函数 在2进整环上有精确定义,是连续的,且关于2进度量是保测的。另外,已知其动态是遍历的。[4]
定义作用于的奇偶矢量函数Template:Mvar:
函数Template:Mvar是2进等距同构。[22]因此,每个无限奇偶性序列都恰好出现一恶搞2进整数,所以几乎所有轨迹在中都是非循环的。
考拉兹猜想的等价表述是
在实数、复数上的迭代Template:Anchor

为整偶数时、为整奇数时或(“快捷”版本)的函数,可将考拉兹映射推广到实數,这就是所谓的插值函数。一个简单方法是选取两个函数、,其中
并将它们作为我们所需值的开关:
- .
其中一个选择是、。这映射的迭代产生了动力系统,Marc Chamberland对其进行了进一步研究。[23]他证明这个猜想对于正实数不成立,因为存在无穷多个不动点与无穷多单调发散到无穷的轨道。函数有2个周期为的吸引子循环:、。此外,我们猜想无界轨道集的勒贝格测度为。
Letherman、Schleicher和Wood将研究推广到复平面,[24]用张伯伦函数求解复正余弦,并添加了额外项 ,其中是任意整函数。由于该式对整实数求值为零,所以推广函数
是考拉兹映射到复平面的插值。添加额外项将所有整数都变为的临界点,于是可证明没有一个整数位于Baker域中,意味着任何整数或者是周期性的,或者属于游荡域。他们猜想后者不成立,也就可以导出,所有整数轨都是有限的。

大部分点的轨道发散,根据发散速度为其着色,便产生左边的图像()。内部黑色区域和外部是法图元素,之间的边界是的朱利亚集,有时称为“考拉兹分形”。

还有许多方法可以定义复插值函数,如用复指数而非正余弦:
- ,
它呈现出不同的动态。例如若,则。对应的朱利亚集(如右图)由不可数多的曲线组成,称为“毛”或“线”。
优化
时空权衡
#作为奇偶序列一节给出了加快序列模拟的方法。要在每次迭代中向前跳转Template:Mvar步,可将当前数字分成两部分:Template:Mvar(Template:Mvar个最小有效位,解释为整数)和Template:Mvar(剩余位,解释为整数)。向前跳转Template:Mvar步的算法是
Template:Mvar(或更好的Template:Math)、Template:Mvar的值可针对所有可能的Template:Mvar位数Template:Mvar预先计算,其中Template:Math是对Template:Mvar应用Template:Mvar次Template:Mvar函数的结果,Template:Math是迭代过程中遇到的奇数个数。[25]例如,若Template:Math,那么每次迭代都可以向前跳5步,方法是分理出数字的5个最小有效位,并使用
- Template:Mvar(0...31, 5) = { 0, 3, 2, 2, 2, 2, 2, 4, 1, 4, 1, 3, 2, 2, 3, 4, 1, 2, 3, 3, 1, 1, 3, 3, 2, 3, 2, 4, 3, 3, 4, 5 },
- Template:Mvar(0...31, 5) = { 0, 2, 1, 1, 2, 2, 2, 20, 1, 26, 1, 10, 4, 4, 13, 40, 2, 5, 17, 17, 2, 2, 20, 20, 8, 22, 8, 71, 26, 26, 80, 242 }.
这需要Template:Math的预计算和存储,以将计算速度提高Template:Mvar倍,是时空权衡。
模限制
对于寻找考拉兹猜想反例,这种预计算带来了更重要的加速。Tomás Oliveira e Silva在计算证实考拉兹猜想时,使用了这种加速,直到很大的Template:Mvar值。对给定的Template:Mvar、Template:Mvar,若不等式
对所有Template:Mvar都成立,那么第一个反例(若存在)不是Template:Mvar模Template:Math。[26]例如,第一个反例一定是奇数,因为Template:Math小于Template:Math;且一定是3 mod 4,因为Template:Math,小于Template:Math。对每个不是考拉兹猜想反例的初值Template:Mvar,都存在使不等式成立的Template:Mvar,因此检查起始值的考拉兹猜想,相当于检查整个同余类。随着Template:Mvar增加,只需搜索没有被较小的Template:Mvar消除的残差Template:Mvar,将只剩极少数。[4]例如,32模的残差只有7、15、27、31。
锡拉丘兹函数
若Template:Mvar为奇整数,则Template:Math是偶数,所以Template:Math,Template:Math是奇数且Template:Math。锡拉丘兹函数是从正整奇数集Template:Mvar指向自身的函数Template:Mvar,其中Template:Math Template:OEIS。
锡拉丘兹函数的性质有:
- 对所有Template:Math, Template:Math(因为Template:Math。)
- 更通俗地说:对所有Template:Math和奇数Template:Mvar,Template:Math。(其中Template:Math是函数迭代记号。)
- 对所有奇数Template:Mvar,Template:Math
考拉兹猜想等价于:对Template:Mvar中所有Template:Mvar,存在整数Template:Math使Template:Math。
不可判定的推广
Template:Main 1972年,约翰·康威证明了考拉兹猜想的一个自然推广在算法上是不可判定的。[27]
具体来说,他考虑了以下形式的函数 其中Template:Math是有理数,其选择使Template:Math总是整数。标准考拉兹函数为Template:Math、Template:Math、Template:Math, Template:Math、Template:Math。康威证明
- 给定Template:Mvar、Template:Mvar,迭代序列Template:Math是否能抵达Template:Math?
是不可判定的,可以转化为停机问题。
与考拉兹猜想更接近的是下面这个普遍量化问题:
- 给定Template:Mvar,迭代序列Template:Math对所有Template:Math是否都能抵达Template:Math?
以这种方式修改条件,可以使问题变得更难或更易解决(直观地说,正面答案更难证明,但反面答案可能更容易)。Kurtz & Simon[28]证明,普遍量化问题事实上是不可判定的,在算术阶层中甚至更高;具体地说,它是Template:Math完全的。即使将模数Template:Mvar限制在6840以限制函数Template:Mvar的类别,这难度结果也成立。[29]
这种形式的简化迭代(所有都为零)在一种名为FFRACTRAN的编程语言中得到了正式化。
研究历史
在1930年代,德国汉堡大学的学生洛薩·考拉兹曾经研究过这个猜想。在1960年,Template:Le也研究过这个猜想。但这猜想到目前,仍没有任何进展。
保羅·艾狄胥就曾称,数学上尚未为此类问题提供答案。他并称会替找出答案的人奖赏500元。
目前已经有分布式计算在进行验证。到2020年,已验证正整数到,也仍未有找到例外的情况。但是这并不能够证明对於任何大小的数,这猜想都能成立。
有的数学家认为,该猜想任何程度的解决都是现代数学的一大进步,将开辟全新的领域。目前也有部分数学家和数学爱好者,在进行关于“负数的”、“”、“”等種種考拉兹猜想的變化形命題的研究。
2019年12月,陶哲轩证明只要是一个趋于正无穷的实数列,那么几乎对所有的正整数(在对数密度意义下) ,有。[30][31]
相關條目
阅读更多
- The Ultimate Challenge: The Template:Nobr Problem,[3] 由美国数学学会于2010年出版,Jeffrey Lagarias编辑,是关于考拉兹猜想、处理方法和一般化思想的资料汇编。其中包含两篇编者所撰的调查论文和5篇与其他作者撰写的论文,内容涉及问题的历史、一般化、统计方法与计算理论的结果。它还包含有关主题的早期论文的重印本,如洛萨·考拉兹的论文。
参考资料
外部連結
- 以電腦研究考拉兹猜想的網頁 Template:Wayback
- Collatz Conjecture的BOINC專案網頁 Template:Wayback
- Template:Cite web
- An ongoing volunteer computing project Template:Webarchive by David Bařina verifies Convergence of the Collatz conjecture for large values. (furthest progress so far)
- An ongoing volunteer computing project Template:Wayback by Eric Roosendaal verifies the Collatz conjecture for larger and larger values.
- Another ongoing volunteer computing project Template:Wayback by Tomás Oliveira e Silva continues to verify the Collatz conjecture (with fewer statistics than Eric Roosendaal's page but with further progress made).
- Template:MathWorld
- Template:PlanetMath.
- Template:Cite web
- Template:Cite AV mediaTemplate:Cbignore
- Template:Cite AV mediaTemplate:Cbignore
- Template:Cite AV media
- Are computers ready to solve this notoriously unwieldy math problem? Template:Wayback
- ↑ Template:Cite book
- ↑ Template:Cite book
- ↑ 3.0 3.1 Template:Cite book
- ↑ 4.0 4.1 4.2 4.3 4.4 Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite web (Note: "Delay records" are total stopping time records.)
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ 9.0 9.1 9.2 Template:Cite journal
- ↑ 10.0 10.1 10.2 Template:Cite journal
- ↑ 11.0 11.1 Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite web
- ↑ Template:Cite journal
- ↑ 15.0 15.1 Template:Cite journal
- ↑ Template:Cite book
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite journal
- ↑ Template:Cite web
- ↑ Template:Cite journal
- ↑ Template:Cite conference
- ↑ Template:Cite book As PDF
- ↑ Template:Cite journal
- ↑ Template:Cite web
- ↑ Template:Cite web