Pin群

来自testwiki
跳转到导航 跳转到搜索

数学中,Pin 群是一个二次型空间相伴的克利福德代数的一个子群。它有一个到正交群的 2 对 1 映射,就像 Spin 群映到特殊正交群一样。

从 Pin 群到正交群的映射不是满的也不是万有覆叠空间,但对定二次型,两者都正确。

一般定义

Template:See also

确定形式

确定形式的 Pin 群是到正交群的满射,每个分支都是单连通的:它是正交群的二重覆叠。正定二次型 Q 和它的负形式 Q 不是同构的,但是正交群是同构的 Template:NoteTag

就标准形式而言,O(n,0)=O(0,n),但是 Pin(n,0)≇Pin(0,n)。使用 Clifford 代数(这里 v2=Q(v)C(V,Q))中通用的“±”号记法,我们可以写成

Pin+(n):=Pin(n,0)Pin(n):=Pin(0,n)

它们都是到 O(n)=O(n,0)=O(0,n) 的满射。

与之对比,我们有同构Template:NoteTag Spin(n,0)Spin(0,n) 且他们都是特殊正交群 SO(n) 惟一的万有覆叠

不定形式

作为拓扑空间

任何连通拓扑群在拓扑意义上有惟一的万有覆叠空间,这个空间有惟一的群结构作为基本群中心扩张。对一个不连通拓扑空间,含单位元的分支有一个惟一的万有覆叠,然后在其他分支作为拓扑空间可取同一个覆叠(这是单位分支的主齐性空间),但是其它分支的群结构一般不是惟一的。

Pin 和 Spin 群是和正交群和特殊正交群关联的独特的拓扑空间,由 Clifford 代数中得出:存在其他类似的群,对于于其他分支的其他二重覆叠或者其他群结构,但是他们不叫做 Pin 或 Spin 群,研究得也少。

结构

两个 Pin 群对应于中心扩张

1{±1}Pin±(V)O(V)1

Spin(V)(行列式为 1 的分支)上的群结构已经定义好了;其余分支的群结构由中心确定,从而有一个 ±1 分歧。

两个扩张由一个反射的原像的平方是 ±1ker(Spin(V)SO(V)) 区分,这两个 Pin 群即是这样命名的。明确地说,一个反射在 O(V) 中的指数为 2,r2=1,所以反射的原像的平方(具有行列式 1)一定在 Spin±(V)SO(V) 的核中,所以 r~2=±1,两种选择都确定了一个 Pin 群(因为所有反射共轭于联通群 SO(V) 的中一个元素,所有反射的平方一定具有相同值)。

具体地,在 Pin+ 中,r~ 的指数为 2,子群 {1,r} 的原像是 C2×C2:如果我们重复同一个反射,得到恒同。

Pin 中,r~ 的指数为 4: 如果重复同一个反射两次,我们得到了一个“旋转 2π”——Spin(V)SO(V) 中的非平凡元可以理解为“旋转 2π”(每一个轴得出相同的元素)。

低维数

在 2 维,Pin+Pin 的区别反映了一个正 2n 边形的二面体群循环群 C2n 的区别。

Pin+ 中,一个正 2n 边形的二面体群的原像,视为子群 Dihn<O(2),是 2n 边形的二面体群 Dih2n<Pin+(2);然而在 Pin 中二面体群的原像是循环群 Dicn<Pin(2)

在 1维,Pin 群共轭于第一个二面体群和循环群:

Pin+(1)C2×C2=Dih1Pin(1)C4=Dic1

中心

不定 Pin 群

Spin(p,q) 有八种不同的二重覆叠,对 p,q0,这对应于用 C2 中心扩张(中心不是 C2×C2 就是 C4)。只有其中两个称为 Pin 群,他们可以将 Clifford 代数作为一个表示。他们分别称为 Pin(p,q) 和 Pin(q,p)。

命名

这个群的名称在 迈克尔·阿蒂亚拉乌尔·博特、A. Shapiro: Clifford modules(Topology 3, suppl. 1 (1964), pp. 3-38, on page 3, line 17)一文中引入,他们说“这个笑话归于 J-P. Serre”。这是“Spin”的逆构词法:Pin 之于 Spin 就像 O(n) 之于 SO(n),从而从“Spin”中去掉“S”得到“Pin”。进一步,词“Pin”的法语发音和一个粗痞话相同,这暗示了这个名称的起源于(或被归于)塞尔。Template:NoteTag

注释

Template:NoteFoot

参考文献

Template:Reflist