雷乔杜里方程
跳转到导航
跳转到搜索
在广义相对论中,雷乔杜里方程(Template:Lang-en),或朗道–雷乔杜里方程(Template:Lang-en)[1]是描述邻近物质运动的基本方程。
它不仅是彭罗斯-霍金奇点定理和广义相对论的精确解研究的基本引理,还具有独特之处,即它指出引力应该是广义相对论中任意质量-能量之间的普遍存在的吸引力,正如在牛顿引力理论中那样。
这一方程由印度物理学家Template:Le[2]和苏联物理学家列夫·朗道各自独立发现。[3]
数学表述
考虑一个类时的单位矢量场 (可理解为不相交的世界线的Template:Le), 雷乔杜里方程可写为
式中
是剪切张量
和涡度张量
的二次不变量。这里
是扩张张量,是它的迹,称为扩张标量。
是正交于的超平面上的投影张量。另外,圆点表示对固有时的微分。Template:Le的迹可写为
- +1
这个量有时也称为雷乔杜里标量。
参见
注释
参考资料
- Template:Cite book See chapter 2 for an excellent discussion of Raychaudhuri's equation for both timelike and null geodesics, as well as the focusing theorem.
- Template:Cite book See appendix F.
- Template:Cite book See chapter 6 for a very detailed introduction to geodesic congruences, including the general form of Raychaudhuri's equation.
- Template:Cite book See section 4.1 for a discussion of the general form of Raychaudhuri's equation.
- Template:Cite journal Raychaudhuri's paper introducing his equation.
- Template:Cite journal See section IV for derivation of the general form of Raychaudhuri equations for three kinematical quantities (namely expansion scalar, shear and rotation).
- Template:Cite journal See for a review on Raychaudhuri equations.
外部链接
- The Meaning of Einstein's Field Equation Template:Wayback by John C. Baez and Emory F. Bunn. Raychaudhuri's equation takes center stage in this well known (and highly recommended) semi-technical exposition of what Einstein's equation says.
- ↑ Spacetime as a deformable solid, M. O. Tahim, R. R. Landim, and C. A. S. Almeida, Template:ArXiv.
- ↑ Template:Cite journal
- ↑ The large scale structure of space-time by Stephen W. Hawking and G. F. R. Ellis, Cambridge University Press, 1973, p. 84, Template:ISBN.