雷乔杜里方程

来自testwiki
跳转到导航 跳转到搜索

广义相对论中,雷乔杜里方程Template:Lang-en),或朗道–雷乔杜里方程Template:Lang-en[1]是描述邻近物质运动的基本方程。

它不仅是彭罗斯-霍金奇点定理广义相对论的精确解研究的基本引理,还具有独特之处,即它指出引力应该是广义相对论中任意质量-能量之间的普遍存在的吸引力,正如在牛顿引力理论中那样。

这一方程由印度物理学家Template:Le[2]和苏联物理学家列夫·朗道各自独立发现。[3]

数学表述

考虑一个类时的单位矢量场 X(可理解为不相交的世界线Template:Le), 雷乔杜里方程可写为

θ˙=θ232σ2+2ω2E[X]aa+X˙a;a

式中

σ2=12σmnσmn,ω2=12ωmnωmn

剪切张量

σab=θab13θhab

涡度张量

ωab=hmahnbX[m;n]

的二次不变量。这里

θab=hmahnbX(m;n)

扩张张量θ是它的,称为扩张标量

hab=gab+XaXb

是正交于X的超平面上的投影张量。另外,圆点表示对固有时的微分。Template:LeE[X]ab的迹可写为

E[X]aa=RmnXmXn +1

这个量有时也称为雷乔杜里标量


参见

注释

Template:Reflist

参考资料

  • Template:Cite book See chapter 2 for an excellent discussion of Raychaudhuri's equation for both timelike and null geodesics, as well as the focusing theorem.
  • Template:Cite book See appendix F.
  • Template:Cite book See chapter 6 for a very detailed introduction to geodesic congruences, including the general form of Raychaudhuri's equation.
  • Template:Cite book See section 4.1 for a discussion of the general form of Raychaudhuri's equation.
  • Template:Cite journal Raychaudhuri's paper introducing his equation.
  • Template:Cite journal See section IV for derivation of the general form of Raychaudhuri equations for three kinematical quantities (namely expansion scalar, shear and rotation).
  • Template:Cite journal See for a review on Raychaudhuri equations.

外部链接

Template:广义相对论

  1. Spacetime as a deformable solid, M. O. Tahim, R. R. Landim, and C. A. S. Almeida, Template:ArXiv.
  2. Template:Cite journal
  3. The large scale structure of space-time by Stephen W. Hawking and G. F. R. Ellis, Cambridge University Press, 1973, p. 84, Template:ISBN.