螺旋函数

来自testwiki
跳转到导航 跳转到搜索
swirl function Maple plot

螺旋函数(Swirl function)是一个以三角函数定义的特殊函数[1]


S(k,n,r,θ)=sin(k*cos(r)n*θ)

其中k,n均为整数。k与螺旋叶的长度与形状有关,n为螺旋的叶片数。

对称性

镜像对称
  • S(k,n,r,θ)S(k,n,r,θ) 互为镜像对称.
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
全对称
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)=f(k,n,r,θ)
  • f(k,n,r,θ)f(k,n,r,θ)
旋转对称

S(k,n,r,θ+2πn)=S(k,n,r,θ)

级数展开

S(k,n,r,θ)sin(kn*θ)(1/2)*cos(kn*θ)*k*r2+((1/8)*sin(kn*θ)*k2+(1/24)*cos(kn*θ)*k)*r4+((1/48)*sin(kn*θ)*k2+cos(kn*θ)*((1/720)*k+(1/48)*k3))*r6+O(r8)

S(k,n,r,θ)sin(k*cos(r))cos(k*cos(r))*n*θ(1/2)*sin(k*cos(r))*n2*θ2+(1/6)*cos(k*cos(r))*n3*θ3+(1/24)*sin(k*cos(r))*n4*θ4(1/120)*cos(k*cos(r))*n5*θ5(1/720)*sin(k*cos(r))*n6*θ6+(1/5040)*cos(k*cos(r))*n7*θ7+(1/40320)*sin(k*cos(r))*n8*θ8+O(θ9)

与其他特殊函数关系

  • S(k,n,r,θ)=(nxarccos(x)+1/2π)KummerM(1,2,i(2nxarccos(x)+π))e1/2i(2nxarccos(x)+π)
  • S(k,n,r,θ)=i(2nxarccos(x)+π)WhittakerM(0,1/2,i(2nxarccos(x)+π))4nxarccos(x)+2π
  • S(k,n,r,θ)=1/2i(1+ei(2nxarccos(x)+π))e1/2i(2nxarccos(x)+π)
  • S(k,n,r,θ)=nx2𝐻𝑒𝑢𝑛𝐵(2,0,0,0,21/2i(2nx(1/2πx𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)11x2)+π))𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)11x2(e1/2i(nxπ1x2+2nx2𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)π1x2)11x2)1+1/2π(nx+1)𝐻𝑒𝑢𝑛𝐵(2,0,0,0,21/2i(2nx(1/2πx𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)11x2)+π))(e1/2i(nxπ1x2+2nx2𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,x2x21)π1x2)11x2)1

图例

螺旋叶数与镜像对称
螺旋叶形

参考文献

  1. Trott, M. Graphica 1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael Trott. Champaign, IL: Wolfram Media, pp. 36-37 and 86, 1999.