蝴蝶函数

来自testwiki
跳转到导航 跳转到搜索

Template:Not

Butterfly function Maple animation with varying parameter a

蝴蝶函数(Butterfly function)因其图形似蝴蝶而得名,蝴蝶函数由下列公式给出[1]

hd(x,y)=(x2y2)sin(x+ya)x2+y2

=(x2y2)*(x+y)*HeunB(2,0,0,0,(2)*sqrt(I*(x+y)/a))(a*exp(I*(x+y)/a)*(x2+y2))

=(1/2*I)*(x2y2)*WhittakerM(0,1/2,(2*I)*(x+y)/a)(x2+y2)

=(1/2*I)*(x2y2)*(Γ(1,(2*I)*(x+y)/a)1)(exp(I*(x+y)/a)*(x2+y2))

=(1/2)*(x2y2)*(x+y)*(π)*(2)*BesselJ(1/2,(x+y)/a)(a*((x+y)/a)*(x2+y2))

级数展开

sin(y/a)cos(y/a)*x/a+((1/2)*y2*sin(y/a)/a2+2*sin(y/a))*x2/y2+((1/6)*y2*cos(y/a)/a3+2*cos(y/a)/a)*x3/y2+((1/24)*y2*sin(y/a)/a4(1/2)*sin(y/a)/a2(1/2)*sin(y/a)*(y2+4*a2)/(a2*y2))*x4/y2+O(x5)

渐近展开

sin((x+y)/a)+2*x2*sin((x+y)/a)/y22*sin((x+y)/a)*x4/y4+2*sin((x+y)/a)*x6/y62*x8*sin((x+y)/a)/y8+2*sin((x+y)/a)*x10/y102*sin((x+y)/a)*x12/y12+O(1/y14)

参考文献

  1. Weisstein, Eric W. "Butterfly Function." From MathWorld--A Wolfram Web Resource. -{R|http://mathworld.wolfram.com/ButterflyFunction.html}- Template:Wayback