米田引理

来自testwiki
跳转到导航 跳转到搜索

範疇論中,米田引理斷言一個對象X的性質由它所表示的函子Hom(X,)Hom(,X)决定。此引理得名于日本數學家暨計算機科學家米田信夫

陳述

𝒞為一範疇,定義兩個函子範疇如下:

𝒞:=Fct(𝒞,𝐒𝐞𝐭)
𝒞:=Fct(𝒞op,𝐒𝐞𝐭)

並定義兩個函子

h𝒞(X)=hX:=Hom𝒞(,X)
k𝒞(X)=kX:=Hom𝒞(X,)

其中h𝒞:C𝒞k𝒞:C𝒞

米田引理的抽象陳述如下:

米田引理。有自然的同構

X𝒞,A𝒞Hom𝒞(hX,A)A(X)
X𝒞,B𝒞Hom𝒞(kX,B)B(X)

這兩個同構對所有變元A,B,X都滿足函子性。

對任一對象Y𝒞,在上述同構中分別取A=hY,B=kY,便得到米田引理最常見的形式:

推論。函子h𝒞:C𝒞k𝒞:C𝒞完全忠實的。

應用

Template:Further 由上述推論,範疇中的對象X由它所表示的函子hXkX唯一確定(至多差一個同調),這是可表函子理論的根基所在。例如在代數幾何中,一個常見的技術是將概形等同於它所代表的函子,後者往往具有直觀的幾何詮釋,技術上亦較容易處理;另一方面,我們也往往從函子的觀點研究空間的商、極限或者是模空間問題,第一步是定義適當的「函子解」,其次再研究它可表與否。代數拓撲中的分類空間也是可表函子概念的體現。

文獻

  • Masaki Kashiwara and Pierre Schapira, Categories and Sheaves, Springer. ISBN 3540279490

外部連結