皮尔西积分

来自testwiki
跳转到导航 跳转到搜索
Integrand of Pearcey integral
Pearcey Integral 3D Maple plot
Pearcey Integral Maple contour plot
Pearcey Integral Maple density plot

皮尔西积分(Pearcey Integral)是一种在论述光的传播、光的衍射分岔理論突变理论以及关于特殊函数的渐进展开式的研究中常见的多鞍点积分,其定义为[1]

P(x,y)=exp(I*(t4+x*t2+y*t))

=(1/2)*(Pi)*exp((1/4*I)*y2/x)*(limit(exp(I*t4)*erf(I*x*t/(I*x)+(1/2*I)*y/(I*x)),t=infinity))/(I*x)+(1/2)*(Pi)*exp((1/4*I)*y2/x)*(limit(exp(I*t4)*erf(I*x*t/(I*x)+(1/2*I)*y/(I*x)),t=infinity))/(I*x)+(2*I)*(Pi)*exp((1/4*I)*y2/x)*(int(exp(I*t4)*erf(I*x*t/(I*x)+(1/2*I)*y/(I*x))*t3,t=infinity..infinity))/(I*x)

被积分函数的鞍点

对于大的|x|,皮尔逊积分的被积分函数左右各有三个鞍点[2]

在右平面的鞍点是

rs1:=(1/3)*(6)*sinh((1/3)*arcsinh((3/4)*y*(2)*(3)/x(3/2)))

rs2:=(1/3)*(6)*sinh((1/3)*arcsinh((3/4)*y*(2)*(3)/x(3/2))+(1/3*I)*Pi)

s3:=(1/3*I)*(6)*cosh((1/3)*arcsinh((3/4)*y*(2)*(3)/x(3/2))+(1/6*I)*Pi)

左平面的鞍点是:

ls1:=(1/3)*(6)*sin((1/3)*arcsin((3/4)*y*(2)*(3)/x(3/2))+(1/3)*Pi)

ls3:=(1/3)*(6)*cos((1/3)*arcsin((3/4)*y*(2)*(3)/x(3/2))+(1/6)*Pi)

ls2:=(1/3)*(6)*sin((1/3)*arcsin((3/4)*y*(2)*(3)/x(3/2)))

分岔

Bifurcation of Pearcey Integral

皮尔西积分的分岔曲线为[3]


27*x2=8y3

斯托克斯曲线

Stokes set of Pearcey Integral

皮尔西积分的斯托克斯曲线为[4]

y3=274((27)5)x2

尖点突变

皮尔西积分的尖点突变区间

在(x,y)平面中,分岔曲线和斯托克斯曲线将平面分化为尖点突变区。[5]

参考文献

  1. Paris,Hyperasymtotic Evaluation,p438
  2. Paris p438-439
  3. Frank Oliver, p781
  4. Frank, p783
  5. Frank p784
  • Frank Oliver, NIST Handbook of Mathematical Functions,2010,Cambridge University Press.
  • R.B. Paris,D. Kaminski,Hyperasymptotic evaluation of the Pearcey integral via

Hadamard expansions.Journal of Computational and Applied Mathematics 190 (2006) 437–452