氯化钠
Template:Redirect2 Template:Chembox
氯化钠(化学式:NaCl),俗稱食鹽、鹽,是一种离子化合物。钠离子和氯离子的原子质量分别为22.99g和35.45g/mol,也就是说100g的氯化钠中含有39.34g的钠和 60.66g的氯。氯化钠是海水中盐分的主要组成部分,它的存在也使得海水有其特有的咸味。氯化钠也是细胞外液的主要盐类,0.9%的氯化鈉水溶液俗称为生理盐水。其可食用的形态是食盐的主要成分,多用于食物的调味和保存。
在工业中,主要用于制造氢氧化钠和氯以及应用于聚氯乙烯、塑料、木浆(纸浆)等许多其他产品的生产过程。由于它可以降低水的熔点,偶尔也用于解冻冰冻的路面。
氯化钠的pH是7。
晶体结构
氯化钠晶体的内部结构,是人类测试的第一个晶体结构[1]。氯化钠的晶体形成立体对称,每个离子有六个相邻的离子,组成一个八面体。其晶体结构中,较大的氯离子排成立方最密堆积(ccp),较小的钠离子则填充氯离子之间的八面体的空隙。每个离子周围都被六个其他的离子包围着。这种结构也存在于其他很多化合物中,称为氯化钠型结构。
| 名称 | 英文名 | 代号 | 晶格结构 | 晶系 | 配位 | 举例 | 示意图(点击可放大) |
|---|---|---|---|---|---|---|---|
| 氯化钠结构 | NaCl structure | B1型 | 面心立方晶格 | 立方晶系 | Template:Efn | Template:Efn | File:NaCl-estructura cristalina.svg |
氯化钠的晶体主要有带正电荷的Na+和带负电荷的Cl−组成,Na+和Cl−在相互垂直的3个方向上的平面上以1:1的比例均匀分布,每个方向上的平面上电荷的代数和为0,称为“电性中和面”。“电性中和面”内静电力较强,但相互平行的相邻的“电性中和面”之间的静电力较弱,导致氯化钠晶体的解理沿着这3个互相垂直的方向产生。因此,当氯化钠晶体受到外力发生破裂时,容易沿着这3个方向破裂开形成一个垂直的“三面凹角”。
性质
物理性质
氯化钠在多数情況下是白色的粉末,其結晶是半透明的立方体,但也可能會因雜質而呈現出蓝或紫的色調。氯化钠的莫耳質量是58.443g/mol,熔點為Template:Convert,沸點為Template:Convert,密度是每立方厘米2.17克。莫氏硬度为2~2.5。[2][3]
氯化钠易溶于水,常温下在水中的溶解度是359克/升。食盐水的物理性质与纯水有较大的差异。常压下,水盐体系的低共熔点为−21.12 °C(−6.02 °F),低共熔物中盐的质量分数为23.31%Template:Efn。该质量分数的食盐水沸点约为108.7 °C (227.7 °F)[4]。氯化钠溶液的PH值不是正好等于7,而是视浓度,溫度及純度而定,介于5.6至8.4之间[5]。
依據sigma Aldrich 物質資料表: 氯化鈉水中溶解度為(25°C) 357 mg/ml, 100°C為 384 mg/ml。飽和食鹽水之密度為 (25°C) 1.202 g/ml。
依此換算25°C 飽和食鹽水每一立方公分含316.223毫克之氯化鈉。
(網路上之飽和生理食鹽水密度錯誤甚多,推估為教學現場密度考題衍生之錯誤)
| Template:Chembox header|氯化钠在不同溶液中的溶解度 g / 1 kg ,25℃[6] | |
|---|---|
| 水 | 360 |
| 甲酰胺 | 94 |
| 甘油 | 83 |
| 1,2-丙二醇 | 71 |
| 甲酸 | 52 |
| 液氨 | 30.2 |
| 甲醇 | 14 |
| 乙醇 | 0.65 |
| 二甲基甲酰胺 | 0.4 |
| 1-丙醇 | 0.124 |
| 环丁砜 | 0.05 |
| 1-丁醇 | 0.05 |
| 异丙醇 | 0.03 |
| 1-戊醇 | 0.018 |
| 乙腈 | 0.003 |
| 丙酮 | 0.00042 |
| 温度 | °C | 800 | 850 | 900 | 1000 | 1100 |
| 电导率 σ | S·m−1 | 3,58 | 3,75 | 3,90 | 4,17 | 4,39 |
化学性质
氯化钠是一种离子化合物,化学式为,代表钠離子與氯離子的比例是一比一,之间靠离子键结合。钠原子将其3s态电子转移到氯原子的3d态上,两者都达到稳定的电子结构。带正电的钠离子与带负电的氯离子相互吸引,稳定的结合在一起[9]。
氯化钠溶於水時,完全电离为钠離子與氯離子[10]。他们会使纯水靠氢键键合形成的正常结构(四面体排列)遭到破坏[11]。Na+与水分子的结合力大约是水分子间氢键的4倍Template:Efn。[12]
从冷溶液中析出的盐當中,每個鹽分子带有两个结晶水:NaCl·2H2O。
氯化钠溶液的检验可分两步完成。首先,向溶液中滴入硝酸酸化过的硝酸银溶液,有白色沉淀(氯化银)产生,证明有Cl-。然后用铂丝蘸取少量溶液,置于酒精灯上灼烧,火焰呈黄色,可证含有Na+。[13]
| 制取金属钠 | |
| 電解饱和食盐水 | |
| 和硝酸银反应 | |
| 氯化钠固体中加入浓硫酸 |
制法
Template:Multiple image 海水和盐湖是氯化鈉的主要来源。
- 蒸发咸水(如晾晒海水),在水没有完全蒸干前滤出氯化钠晶体。适合大量生产。[14]
- 少量精制:将粗盐溶解于水中,过滤掉不溶性杂质,再加精制剂如NaOH、Na2CO3 和CaCl2 等,使SO42−、Ca2+、Mg2+ 等可溶性杂质转化成沉淀,并滤除。最后用盐酸将pH调节至7以下,蒸干溶液,得到氯化钠晶体。
- 实验室里的制备方法:将过量的盐酸和氢氧化钠,碳酸氫鈉,氧化鈉或碳酸鈉等鈉鹽的水溶液混合,或將過氧化氫與次氯酸鈉溶液混合,蒸干溶液,析出氯化钠晶体。
- HCl(aq)+NaOH(aq)→NaCl(aq)+H₂O(l)
- HCl(aq)+NaHCO₃(aq)→NaCl(aq)+CO₂(g)+H₂O(l)
- 2HCl(aq)+Na₂O(s)→2NaCl(aq)+H₂O(l)
- 4HCl(aq)+2Na₂O₂(s)→4NaCl(aq)+O₂(g)+2H₂O(l)
- 2HCl(aq)+Na₂CO₃(aq)→2NaCl(aq)+CO₂(g)+H₂O
- H₂O₂(aq)+NaClO(aq)→NaCl(aq)+O₂(g)+H₂O(l)
- 把金屬鈉放進鹽酸,蒸乾溶液,得到氯化鈉晶體。
- 2HCl(aq)+2Na(s)→2NaCl(aq)+H₂(g)
- 但此為爆炸性反應,一般不會使用。
- 把金屬鈉加熱,並放進氯氣中混合,得到氯化鈉晶體。
- 2Na(s)+Cl₂(g)→2NaCl(s)
用途
Template:Update 氯化钠的用途很广,使用量也大。根据1974年的统计数据,美国生产的氯化钠中只有2.7%作为家用食盐出售,16.6%用于路面除冰[15],4.2%用于动物饲料,1.8%用于硬水软化,剩余60%以上均被用于工业生产[16]。
各种化合物的生产
氯化钠是各种化学反应的生产中(不管是直接还是间接使用)不可缺少的原料。
由电解饱和食盐水溶液制取氫氧化鈉、氯气和氢气的工业生产方法,是重要的基础化学工业之一。其反应如下: -{zh-hans:; zh-hant:}-
也叫索尔维法,是工业生产碳酸钠的主要方法。此反应需要氯化钠和石灰石,其产物是氯化钙和碳酸钠。
也叫侯氏制碱法,同样是工业生产碳酸钠的主要方法。此反应需要氯化钠、二氧化碳和氨气,其产物是氮肥氯化铵和碳酸氢钠,再经加热使碳酸氢钠分解为碳酸钠。
硬水(如井水)含有大量的镁离子和钙离子。硬水有许多危害,包括降低洗衣液的效果和阻塞水管,因此需要用离子交换树脂将其置换出来。氯化钠用于更新已失效的離子交換樹脂,使其能重复使用。
餐饮
Template:Main 氯化钠能产生人类能感知的鹹味,是一种常见的调味料。食鹽中一般含有97至99%的氯化钠[17][18]。此外,海盐及新鮮開採的石鹽(多數來自史前海洋)也含有微量的稀有元素,這些稀有元素通常對健康有益。
食鹽中的鈉是人體必需的營養素之一,但攝取過量的食鹽易得高血壓[19],或其它心血管疾病[20]。世界衛生組織建議,成年人每天應攝取少於2克的鈉,相當於5克食鹽[21]。
医学
Template:Main 氯化鈉对于地球上的生命非常重要。大部分生物组织中含有多种盐类。钠离子在体内负责调节神经冲动的传导。血液中的钠离子浓度直接关系到体液的安全水平的调节,浓度失常会导致高钠血症或低血钠症。[22]
0.9%的氯化鈉水溶液称为生理盐水,因为它与血浆有相同的渗透压。生理盐水是主要的体液替代物,广泛用于治疗及预防脱水Template:Efn,也用于静脉注射治疗及预防血量减少性休克。
工业
氯化钠是无机重化工业的基础,在无机化工中,使用的食盐比其他任何原料都要多[23]。其中,消耗食盐最多的工艺是氯碱法,该工艺通过电解食盐水制备氢氧化钠、氯气和氢气,通过电解熔盐获得金属钠和氯气。氯气主要被用于合成含氯有机化合物(如氯氟烃、聚氯乙烯)和消毒漂白,氢氧化钠则被广泛运用于无机化工和纸浆处理。另一种消耗食盐量比较大的工艺是氨碱法,该法通过往食盐水中注入氨和二氧化碳来制备碳酸氢钠,进而制备碳酸钠。大部分碳酸钠被用于制造玻璃。[24]
道路
用于路面除冰是除了工业生产之外盐的主要用途。
注释
参考资料
參考文獻
参见
外部連結
Template:Commons Template:Cookbook
- Salt Template:Wayback United States Geological Survey Statistics and Information
- Template:Cite journal
- Calculators: surface tensions Template:Wayback, and densities, molarities and molalities Template:Wayback of aqueous NaCl (and other salts)
- JtBaker MSDS
Template:Molecules detected in outer space Template:钠化合物 Template:氯化物 Template:矿物补充剂
- ↑ Template:Cite web
- ↑ Template:Cite book
- ↑ Template:Cite web
- ↑ Elvers, B. et al. (ed.) (1991) Ullmann's Encyclopedia of Industrial Chemistry, 5th ed. Vol. A24, Wiley, p. 319, ISBN 978-3-527-20124-2.
- ↑ L Shu, IJ Obagbemi, S Liyanaarachchi, D Navaratna, R Parthasarathy, V Jegatheesan (2016) Why does pH increase with CaCl2 as draw solution during forward osmosis filtration,Process Safety and Environmental Protection 104, 465–471
- ↑ Template:Cite book
- ↑ G. Westphal, G. Kristen, W. Wegener, P. Ambatiello, H. Geyer, B. Epron, C. Bonal, G. Steinhauser, F. Götzfried: Sodium Chloride, in: Ullmanns Enzyklopädie der Technischen Chemie, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2012; Template:DOI.
- ↑ Template:Cite journal
- ↑ Template:Cite book
- ↑ Template:Cite web
- ↑ Lincoln, S. F.; Richens, D. T. and Sykes, A. G. (2003) "Metal Aqua Ions" Comprehensive Coordination Chemistry II Volume 1, pp. 515–555. Template:DOI
- ↑ Template:Cite book
- ↑ Template:Cite web
- ↑ Salt Template:Wayback, U.S. Geological Survey
- ↑ Rastogi, Nina (16 February 2010) Does road salt harm the environment? Template:Wayback slate.com.
- ↑ Westphal, Gisbert et al. (2002) "Sodium Chloride" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim Template:DOI.
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite web
- ↑ Template:Cite journal
- ↑ Template:Cite web
- ↑ Template:Cite journal
- ↑ Dennis S. Kostick Salt Template:Wayback, U.S. Geological Survey, 2008 Minerals Yearbook
- ↑ Template:Cite book