条件独立
跳转到导航
跳转到搜索
Template:Expand language Template:NoteTA Template:Probability fundamentals 在概率论和統計學中,两事件R 和B 在给定的另一事件Y 发生时条件独立,類似於統計獨立性,就是指当事件Y 发生时,R 发生与否和B 发生与否就条件概率分布而言是独立的。换句话讲,R 和B 在给定Y 发生时条件独立,当且仅当已知Y 发生时,知道R 发生与否无助于知道B 发生与否,同样知道B 发生与否也无助于知道R 发生与否。
定義

但给定Y不发生时,它们不是条件独立的,这是因为 :
R和B在给定Y发生时条件独立,用概率论的标准记号表示为
也可以等价地表示为
因为当事件Y发生时,R发生与否和B发生与否就条件概率分布而言是独立的。
两个随机变量X和Y在给定第三个随机变量Z的情况下条件独立当且仅当它们在给定Z时的条件概率分布互相独立,也就是说,给定Z的任一值,X的概率分布和Y的值无关,Y的概率分布也和X的值无关。
法则
因這些推论在任何機率空間中都成立,因此也对所有变量关于另一变量的条件概率分布成立,只需考慮相应子空间即可。譬如說也就意味着。
注:位於算式下方的逗號意为“和”。
對稱性
分解
證明:
- (的定义)
- (对B积分以消去B)
同理可证X和B條件獨立。
微弱的聯合
證明:
- 藉由定義
- 由於分解的屬性,
- 結合兩個等式得,其中確認 第二個條件可以類似地被證明。
註釋
參考資料
參見
引用错误:名称为“註”的group(分组)存在<ref>标签,但未找到对应的<references group="註"/>标签
- ↑ Template:Cite journal
- ↑ J Pearl, Causality: Models, Reasoning, and Inference, 2000, Cambridge University Press