有理函数积分表

来自testwiki
跳转到导航 跳转到搜索

Template:Unreferenced

以下是部份有理函數的积分表

(ax+b)ndx=(ax+b)n+1a(n+1)+C(n1)
1ax+bdx=1aln|ax+b|+C
x(ax+b)ndx=a(n+1)xba2(n+1)(n+2)(ax+b)n+1+C(n∉{1,2})
xax+bdx=xaba2ln|ax+b|+C
x(ax+b)2dx=ba2(ax+b)+1a2ln|ax+b|+C
x(ax+b)ndx=a(1n)xba2(n1)(n2)(ax+b)n1+C(n∉{1,2})
x2ax+bdx=1a3[(ax+b)222b(ax+b)+b2ln|ax+b|]+C
x2(ax+b)2dx=1a3(ax+b2bln|ax+b|b2ax+b)+C
x2(ax+b)3dx=1a3[ln|ax+b|+2bax+bb22(ax+b)2]+C
x2(ax+b)ndx=1a3[1(n3)(ax+b)n3+2b(n2)(ax+b)n2b2(n1)(ax+b)n1]+C
(n∉{1,2,3})
dxx(ax+b)=1bln|ax+bx|+C
dxx2(ax+b)=1bx+ab2ln|ax+bx|+C
dxx2(ax+b)2=a[1b2(ax+b)+1ab2x2b3ln|ax+bx|]+C
dxx2+a2=1aarctanxa+C
dxx2a2=1aartanhxa=12alnaxa+x+C(|x|<|a|)
dxx2a2=1aarcothxa=12alnxax+a+C(|x|>|a|)
dxax2+bx+c=24acb2arctan2ax+b4acb2+C,(4acb2>0)
dxax2+bx+c=2b24acartanh2ax+bb24ac+C=1b24acln|2ax+bb24ac2ax+b+b24ac|+C(4acb2<0)
dxax2+bx+c=22ax+b+C(4acb2=0)
xax2+bx+cdx=12aln|ax2+bx+c|b2adxax2+bx+c+C
mx+nax2+bx+cdx=m2aln|ax2+bx+c|+2anbma4acb2arctan2ax+b4acb2+C(4acb2>0)
mx+nax2+bx+cdx=m2aln|ax2+bx+c|2anbmab24acartanh2ax+bb24ac+C(4acb2<0)
mx+nax2+bx+cdx=m2aln|ax2+bx+c|2anbma(2ax+b)+C(4acb2=0)
dx(ax2+bx+c)n=2ax+b(n1)(4acb2)(ax2+bx+c)n1+(2n3)2a(n1)(4acb2)dx(ax2+bx+c)n1+C
x(ax2+bx+c)ndx=bx+2c(n1)(4acb2)(ax2+bx+c)n1b(2n3)(n1)(4acb2)dx(ax2+bx+c)n1+C

對於任意的有理函數,我們都能通過部分分式(partial fraction)把該函數分拆為數個函數的總和,其中每個函數符合以下的形式:px+q(ax2+bx+c)n。我們繼而能把每一個該種形式的函數作积分運算:

dxx(ax2+bx+c)=12cln|x2ax2+bx+c|b2cdxax2+bx+c+C

Template:Lists of integrals