斐波那契双曲函数

来自testwiki
跳转到导航 跳转到搜索

斐波那契双曲函数(Fibonoacci hyperbolic functions)是一个与黄金分割有关的特殊函数[1]

斐波那契双曲函数

定义如下:[2]

斐波那契双曲正弦函数

sFh(x)=2*sinh(2*x*α)5

其中α黄金分割的对数:

α=ln(ϕ)=ln1+52=0.4812118246


斐波那契双曲余弦函数

cFh(x)=2*sinh(2*x*α)5



斐波那契双曲正切函数

tFh(x)=fsh(x)fch(x)

斐氏双曲函数图

Fibonacci hyperbolic sine
斐波那契双曲正弦虚数图
斐氏正弦虚数三维图
Fibonacci hyperbolic cosine
斐氏双曲余弦虚数三维图
Fibonacci hyperbolic tangent
斐氏双曲正切虚数图

关系式

  • sFh(x)=sFh(x)
  • cFh(x)=cFh(x1)
  • sFh2(x)+cFh2(x)=cFh(2x)
  • cFh2(x)sFh2(x)=1+sFh(x)cFh(x)
  • sFh(x)+sFh(y)=(5)sFh*(x+y2)cFh(xy12)
  • cFh(x)+cFh(y)=5cFh(x+y2)cFh(x+y12)




级数展开

  • fsh(x){(4/55ln(1/2+1/25)x+8155(ln(1/2+1/25))3x3+8755(ln(1/2+1/25))5x5+1615755(ln(1/2+1/25))7x7+O(x9))}
  • fch(x)(1/5)*(5)*(5+(5))/((5)+1)+(2/5)*(5)*ln(1/2+(1/2)*(5))*x+(2/5)*(5)*(5+(5))*ln(1/2+(1/2)*(5))2*x2/((5)+1)+(4/15)*(5)*ln(1/2+(1/2)*(5))3*x3+(2/15)*(5)*(5+(5))*ln(1/2+(1/2)*(5))4*x4/((5)+1)+O(x5)
  • fth(x)4*ln(1/2+(1/2)*(5))*((5)+1)*x/(5+(5))8*ln(1/2+(1/2)*(5))2*((5)+1)2*x2/(5+(5))2+(2*((8/3)*ln(1/2+(1/2)*(5))3+8*ln(1/2+(1/2)*(5))3*((5)+1)2/(5+(5))2))*((5)+1)*x3/(5+(5))+O(x4)

渐近展开

  • sFh(x){1/55((5+1)x)2(2x)21/55(2x)2((5+1)x)2}


  • cFh(x){2/5(1/45+1/4)5((5+1)x)2(2x)2+2/55(2x)2(5+1)((5+1)x)2}

Heun函数表示

  • sFh(x)=4/55x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)𝐻𝑒𝑢𝑛𝐵(2,0,0,0,2x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1)(5+1)1(e2x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1)1
  • cFh(x)=2/5i5(2x+1)(51)𝐻𝑒𝑢𝑛𝐵(2,0,0,0,2(2x1)(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1+1/2iπ)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)(5+1)1(e1/24𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)x5+4𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)x2𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+2𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)+iπ5+iπ5+1)1+1/55π𝐻𝑒𝑢𝑛𝐵(2,0,0,0,2(2x1)(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1+1/2iπ)(e1/24𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)x5+4𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)x2𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+2𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)+iπ5+iπ5+1)1
  • tFh(x)=4x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)𝐻𝑒𝑢𝑛𝐵(2,0,0,0,2x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1)e1/24𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)x5+4𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)x2𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+2𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)+iπ5+iπ5+1(5+1)1(e2x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1)1(2i(2x+1)(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1+π)1(𝐻𝑒𝑢𝑛𝐵(2,0,0,0,2(2x1)(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1+1/2iπ))1

斐波那契双曲反函数

反双曲正弦
  • arcsFh(z)=1/2𝑎𝑟𝑐𝑠𝑖𝑛(1/2z5)ln(1/2+1/25)满足sFh(arcsFh(y))=y
反双曲余弦
  • arccFh(z)=1/2ln(1/2+1/25)𝑎𝑟𝑐𝑐𝑜𝑠(1/2z5)ln(1/2+1/25)满足arccFh(cFh(z))=z
反双曲正切
  • arctFh(z)=1/4ln(z+z5+2z+z52)(ln(1/2+1/25))1满足arctFh(tFh(z))=z

Heun函数表示

arcsFh(z)=1/2z5(5+1)𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,5z25z2+4)15z2+4(51)1(𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1))1

arccFh(z)=1/2+(1/2(2+z5)2z5(5+1)𝐻𝑒𝑢𝑛𝐶(0,1/2,0,0,1/4,5/4z25/4z21)(2+z5)115z2+4(51)11/4(2+z5)2π(5+1)(2+z5)(51))(𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1))1

arctFh(x)=z=4x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)𝐻𝑒𝑢𝑛𝐵(2,0,0,0,2x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1)e1/24𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)x5+4𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)x2𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+2𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)+iπ5+iπ5+1(5+1)1(e2x(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1)1(2i(2x+1)(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1+π)1(𝐻𝑒𝑢𝑛𝐵(2,0,0,0,2(12x)(51)𝐻𝑒𝑢𝑛𝐶(0,1,0,0,1/2,515+1)5+1+1/2iπ))1

级数展开

  • arcsFh(z)(1/45ln(1/2+1/25)z5965ln(1/2+1/25)z3+155125ln(1/2+1/25)z5625286725ln(1/2+1/25)z7+2187511796485ln(1/2+1/25)z9+O(z11))>
  • arccFh(z)(1/2ln(1/2+1/25)+1/2i𝑐𝑠𝑔𝑛(i(1/2z51))πln(1/2+1/25)+1/4i𝑐𝑠𝑔𝑛(i(1/2z51))5(ln(12+1/25))1z+596i5𝑐𝑠𝑔𝑛(i(1/2z51))(ln(12+1/25))1z3+15512i5𝑐𝑠𝑔𝑛(i(1/2z51))(ln(12+1/25))1z5+62528672i5𝑐𝑠𝑔𝑛(i(1/2z51))(ln(12+1/25))1z7+218751179648i5𝑐𝑠𝑔𝑛(i(1/2z51))(ln(12+1/25))1z9+O(z11))>
  • arctFh(z)(1/45ln(1/2+1/25)z+1/41/25(5+1)5/2ln(1/2+1/25)z2+1/45/655/2+1/45(5+1)2ln(1/2+1/25)z3+1/4516(5+1)2+1/85(5+1)35/85258ln(1/2+1/25)z4+O(z5))>

渐近展开

  • arcsFh(z)1/21/2ln(5)+ln(z)ln(1/2+1/25)+1/101ln(1/2+1/25)z231001ln(1/2+1/25)z4+1751ln(1/2+1/25)z6710001ln(1/2+1/25)z8+O(z10)
  • arccFh(z)1/2ln(1/2+1/25)1/2ln(5)ln(z)ln(1/2+1/25)1/101ln(1/2+1/25)z231001ln(1/2+1/25)z41751ln(1/2+1/25)z6710001ln(1/2+1/25)z8+O(z10)
  • arctFh(z)1/4ln(515+1)+iπln(1/2+1/25)+1/42+2515+1(51)ln(1/2+1/25)z+1/485(5+1)2(51)25(2+2515+1)(5+1)(51)2ln(1/2+1/25)z2+O(z3)

反函数图

Fibonacci hyperbolic arcsine 2D
斐氏正弦虚数三维图
Fibonacci hyperbolic arcsine 2D density plot
Fibonacci hyperbolic sine imaginary part density plot
Fibonacci hyperbolic arccosine 2D
Fibonacci hyperbolic arccosine 2D density plot
斐氏余弦虚数三维图
Fibonacci hyperbolic tangent imaginary part density plot
Fibonacci hyperbolic arctan 2D
斐氏正切虚数三维图

参考文献

  1. Template:Cite mathworld
  2. Zdzlslaw W. Trzaska,ON FIBONACCI HYPERBOLIC TRIGONOMETRY AND MODIFIED NUMERICAL TRIANGLES,1994