拉馬努金和
跳转到导航
跳转到搜索
Template:NoteTA Template:Distinguish 在數學的分支領域數論中,拉馬努金和(Template:Lang-en)常標示為,為一個帶有兩正整數變數以及的函數,其定義如下:
其中表示只能是與互質的數。
斯里尼瓦瑟·拉馬努金於1918年的一篇論文中引入這項和的觀念。[1]拉馬努金和也用在Template:Le的證明,此定理指出:任何足夠大的奇數可為三個質數的和。[2]
本文符號彙整
若整數a與b,有關係(唸作「a整除b」),表示存在一個整數c使得b = ac;相似地,表示「a無法整除b」。
求和符號
表示d只採用其正整數因數m,亦即
- 。
另外用到的有:
cq(n)的數學式
三角函數
等等(Template:OEIS2C, Template:OEIS2C, Template:OEIS2C, Template:OEIS2C,.., Template:OEIS2C, ...)。這些式子顯示出cq(n)為實數。
拉馬努金展開式
參考文獻
書目
- Template:Citation (pp. 179–199 of his Collected Papers)
- Template:Citation (pp. 136–163 of his Collected Papers)
- ↑ Ramanujan, On Certain Trigonometric Sums ...
(Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet-Dedekind Vorlesungen über Zahlentheorie, 4th ed.These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.
- ↑ Nathanson, ch. 8