截角五维超正方体

来自testwiki
跳转到导航 跳转到搜索

Template:NoteTA Template:Infobox polytope

截角五维超正方体可以通过在每条棱距离顶点1/(2+2)处截断五维超正方体的顶点来得到。每个被截断的顶点会产生一个新的正五胞体

坐标

一个棱长为2的截角五维超正方体的每个顶点的笛卡儿坐标系坐标为:

(±1, ±(1+2), ±(1+2), ±(1+2), ±(1+2))

投影

正交投影
考克斯特平面 B5 B4 / D5 B3 / D4 / A2
Graph
二面体群 [10] [8] [6]
考克斯特平面 B2 A3
Graph
二面体群 [4] [4]

截角五维超正方体是各维度截角超方形中的第四个:

截角超方形
...
八边形 截角立方体 截角正八胞体 截角五维超正方体 截角六维超正方体 截角七维超正方体 截角八维超正方体
Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD

参考文献

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1] Template:Wayback
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Template:KlitzingPolytopes o3o3o3x4x - tan, o3o3x3x4o - bittin

外部链接