弗洛凱理論

来自testwiki
跳转到导航 跳转到搜索

弗洛凱理論(Floquet theory)常微分方程理論的一種,討論有關下列微分方程類型的解答類別,

x˙=A(t)x,

其中,A(t)是一週期為T的連續週期函數。

弗洛凱理論的主要定理-弗洛凱定理給出了一般線性系統的每個基本解正規形式。它給定了一座標轉變y=Q1(t)x,其中Q(t+2T)=Q(t),用以來轉變週期系統至有常數及實係數的傳統線性系統。

固態物理中,其類比的結果(推廣至三維)為布洛赫定理


弗洛凱定理

X=A(t)x

其中,A(t)是一周期为T的连续周期函数。

弗洛凯理论的主要定理-弗洛凯定理给出了一般线性系统的每个基本解的正规形式。它给定了一座标转变y=Q1(t)x,其中Q(t+T)=Q(t),用以来转变周期系统至有常数及实系数的传统线性系统

固态物理中,其类比的结果(推广至三维)为布洛赫定理。

結論與應用

量子力学中,含时薛定谔方程为it|ψ(t)=H^(t)|ψ(t)。 如果哈密顿量H^(t)满足周期性边界条件H^(t+T)=H^(t)T=2π/ω,可以假定含时薛定谔方程的解为|ψ(t)=eiϵt|ϕ(t),其中,|ϕ(t)应满足|ϕ(t+T)=|ϕ(t)。 则原含时薛定谔方程变换为一个新的类似定态的薛定谔方程

(H^(t)it)^|ϕ(t)=ε|ϕ(t)

其中^为新的Floquet哈密顿量,ε为准能量,|ϕ(t)被称为Floquet态。

參考


Template:Math-stub