平衡点 (数学)

来自testwiki
跳转到导航 跳转到搜索

Template:Unreferenced数学中,平衡点(equilibrium point)是相对微分方程差分方程的概念,多指微分方程的常数解(constant solution)。

定义

对于微分方程

d𝐱dt=𝐟(t,𝐱),𝐱n

𝐟(t,𝐱~)=0对任意t都成立,则称𝐱~为此微分方程的平衡点

类似地,对于差分方程

𝐱k+1=𝐟(k,𝐱k),𝐱n

𝐟(k,𝐱~)=𝐱~k=0,1,2,都成立,则称𝐱~为此差分方程的平衡点

分类

微分方程可以被线性化为以下形式

d𝐱dt=𝐀𝐱

其中𝐀𝐟(t,𝐱)在平衡点𝐱~处的雅可比矩阵。通过观察矩阵𝐀特征值的符号,可以判断平衡点𝐱~的稳定性。

𝐀的所有的特征值的实部均不为0,则𝐱~被称为双曲平衡点。若所有特征值的实部均为负值,则此平衡点是稳定点。若至少存在一个特征值的实部为正值,则此平衡点是不稳定点。若至少有一个特征值的实部为正,且至少有一个特征值的实部为负,则此平衡点是鞍点

关于差分方程的平衡点也可作相似的分类。设𝐆𝐟(k,𝐱k)在平衡点𝐱~处的雅可比矩阵

𝐀的所有的特征值的均不为1,则𝐱~被称为双曲平衡点。若所有特征值的模均为小于1,则此平衡点是稳定点。若至少存在一个特征值的模大于1,则此平衡点是不稳定点。若至少有一个特征值的模大于1,且至少有一个特征值的模小于1,则此平衡点是鞍点

Template:平衡