古戈爾普勒克斯
跳转到导航
跳转到搜索
Template:NoteTA Template:不是 {{#invoke:TemplateVariadicArgumentSingle|build_template |_core_template=Template:Infobox number/core |_core_args=lang |_core_insert_code= | lang$ = {{{lang$|}}} | lang$ symbol = {{{lang$ symbol|}}} }}
古戈爾普勒克斯(googolplex)是指
(10的古戈爾次方),也就是:
這是1後有古戈爾(googol,
)個0。美國數學家愛德華·卡斯納的侄子米爾頓·西羅蒂造出古戈爾一詞,卡斯納为古戈尔直接派生出古戈爾普勒克斯一詞。
因為一古戈爾比已知宇宙中基本粒子數目要多(後者估計在到之間),而一古戈爾普勒克斯的零的數目為一古戈爾,假設一普朗克時間可以寫一個零,需要約 倍現在宇宙的年齡的時間才能寫完。同時,假設一個零的大小為一普朗克長度,一古戈爾普勒克斯的長度相當於 個現今可觀測宇宙的直徑。所以要把古戈爾普勒克斯以十進位寫出來是不可能的,至少在初等函数范围内,这是一个“遥不可及”的数。
即使這樣,古戈爾普勒克斯仍是小於一些特別定義出來的巨大數,比如用高德納箭號表示法或斯坦豪斯-莫澤表示法表示的數,或是葛立恆數。更簡單的,可以用比古戈爾普勒克斯少的符號數目表示更大的數,例如這三個數比古戈爾普勒克斯大得多:
性質
- 半完全數。由於所有半完全數的倍數都是半完全數[1],而100、1000都是半完全數[2],因此10050即10100也為半完全數,其中100為本原半完全數20的倍數[3]。由於古戈爾是半完全數,而古戈爾普勒克斯為古戈爾的倍數,因此古戈爾普勒克斯也是半完全數。
- 過剩數。由於所有過剩數的倍數都是過剩數[4]Template:Rp,而10100是一個過剩數,且1010100是10100的倍數,因此1010100也是過剩數。
- 十进制的節儉數。1010100是一個10100+1-{位}-數,但其質因數分解含指數的-{位}-數總和只有Template:計算結果。
參見
外部連結
- 已知的古戈爾普勒克斯+n的素因數(0≤n≤999): -{R|http://www.alpertron.com.ar/GOOGOL.HTM}- Template:Wayback
- 另一個古戈爾普勒克斯網頁:-{R|http://www.procrastinators.org/googolplex.html}-Template:Wayback