双重sinh-Gordon方程

来自testwiki
跳转到导航 跳转到搜索

双重sinh-Gordon方程(Double sinh-Gordon equation)是一个非线性偏微分方程[1][2][3][4][5].

uxt=asinh(u)+bsinh(2u)

行波解

  • v=C5*JacobiCN(C2+C3*x(a*C522*b*C522*ba)*t/(C3*(C521)),((2*a*C52+a*C54+a+2*b2*b*C54)*(a*C522*b*C52a))*C5/(2*a*C52+a*C54+a+2*b2*b*C54))
  • v=C5*JacobiDN(C2+C3*xC52*(a*C522*b*C52a)*t/(C3*(2*C52+1+C54)),((2*a*C52+a*C54+a+2*b2*b*C54)*(a*C522*b*C52a))/((a*C522*b*C52a)*C5))
  • v=C5*JacobiNC(C2+C3*x+(a*C522*b*C522*ba)*t/(C3*(C521)),((2*a*C52+a*C54+a+2*b2*b*C54)*(a*C522*ba))/(2*a*C52+a*C54+a+2*b2*b*C54))
  • v=C5*JacobiND(C2+C3*x(a*C522*ba)*t/(C3*(2*C52+1+C54)),((2*a*C52+a*C54+a+2*b2*b*C54)*(a*C522*ba))/(a*C522*ba))
  • v=(a*(2*b+a))*csc(C1+C2*x(2*b+a)*t/C2)/a
  • v=(a*(2*b+a))*csc(C2+C3*x(2*b+a)*t/C3)/a
  • v=(a*(2*b+a))*sec(C1+C2*x(2*b+a)*t/C2)/a
  • v=(a*(2*b+a))*sech(C1+C2*x+(2*b+a)*t/C2)/a
  • v=(a*(2*b+a))*csch(C1+C2*x+(2*b+a)*t/C2)/a
  • v=((a2*b)*a)*cosh(C2+C3*x(a2*b)*t/C3)/(a2*b)
  • v=((a2*b)*(2*b+a))*tanh(C1+C2*x+(1/8)*(a24*b2)*t/(C2*b))/(a2*b)

其中 v=tanh((1/2)*u)

特解

  • u(x,t)=2arctanh(1.5*JacobiCN(1.2+1.3*x+3.2307692307692307692*t,1.0555973258234951998))
  • u(x,t)=2arctanh(1.5*JacobiDN(1.2+1.3*x+3.6000000000000000000*t,.94733093343134184593))
  • u(x,t)=2*arctanh(1.5*JacobiNC(1.21.3*x+3.2307692307692307692*t,.33806170189140663100*I))
  • u(x,t)=2*arctanh(1.5*JacobiND(1.2+1.3*x+.36923076923076923077*t,2.9580398915498080213*I))
  • u(x,t)=2*arctanh((3)*csc(15.11.2*x+2.5000000000000000000*t))
  • u(x,t)=2*arctanh((3)*csc(1.21.3*x+2.3076923076923076923*t))
  • u(x,t)=2*arctanh((3)*sec(15.11.2*x+2.5000000000000000000*t))
  • u(x,t)=2*arctanh((3)*sech(15.1+1.2*x+2.5000000000000000000*t))
  • u(x,t)=2*arctanh((3)*sech(1.2+1.3*x+2.3076923076923076923*t))
  • u(x,t)=2*arctanh((3)*csch(15.1+1.2*x+2.5000000000000000000*t))

行波图

参考文献

  1. Andrei D. Polyanin, Valentin F. Zaitsev, HANDBOOK OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS SECOND EDITION CRC Press, A Chapman & Hall Book ISBN 9781420087239
  2. Zeitschrift Für Naturforschung: A journal of physical sciences 2004 p933-937
  3. A. M. WAZWAZ Exact solutions to the double sinh-gordon equation by the tanh method and a variable separated ODE method,Computers & Mathematics with Applications,Volume 50, Issues 10–12, November–December 2005, Pages 1685–1696
  4. Issues in Logic, Operations, and Computational Mathematics and Geometry 2013 p484
  5. Mathematical Reviews - Page 3708 2007