加德纳-KP方程

来自testwiki
跳转到导航 跳转到搜索

加德纳-KP方程(Gardner-KP equation)是一个非线性偏微分方程[1]

(ut+6uux+6u2*ux+uxxx)x+uyy=0

行波解

加德纳-KP方程有行波解:

u(x,y,t)=1/2C2*sech(C1+C2*x+C3*y(1/2)*(3*C22+2*C32+2*C24)*t/C2) u(x,y,t)=1/2C3*JacobiDN(C2+C3*x+C4*y+(1/2)*(3*C322*C42+2*C34*C124*C34)*t/C3,C1) u(x,y,t)=1/2+C3*JacobiDN(C2+C3*x+C4*y+(1/2)*(3*C322*C42+2*C34*C124*C34)*t/C3,C1) u(x,y,t)=1/2I*C2*coth(C1+C2*x+C3*y+(1/2)*(3*C222*C32+4*C24)*t/C2) u(x,y,t)=1/2I*C2*csc(C1+C2*x+C3*y+(1/2)*(3*C222*C32+2*C24)*t/C2) u(x,y,t)=1/2I*C2*tan(C1+C2*x+C3*y(1/2)*(3*C22+2*C32+4*C24)*t/C2) u(x,y,t)=1/2I*C3*JacobiND(C2+C3*x+C4*y+(1/2)*(3*C322*C42)*t/C3,sqrt(2)) u(x,y,t)=1/2(1/2*I)*(2)*C3*JacobiNC(C2+C3*x+C4*y+(1/2)*(3*C322*C42)*t/C3,(1/2)*(2))

图集

参考文献

  1. Shafiof and Sousaraei,New Solutions for Positive and Negaive Gardner-KP Equation, World Applied Sciences Journal 13(4) 622-666,2011