冯·卡门方程

来自testwiki
跳转到导航 跳转到搜索
Von Karman equation U Maple plot
Von Karman equation w Maple plot

卡门方程是一个模拟平板变形的四阶椭圆型非线性偏微分方程组:[1]

ΔΔ(u)=a((wxy)2wxxwyy)

ΔΔ(w)=b(uyywxx+uxxwyy2uxywxy)+c

其中 Δ=x2+y2

通解

卡门方程有下列解析解[2]

u:=(1/2*(A[3]*x3+A[2]*x2+A[1]*x+A[0]))*y2+y(1/10)*x5*A[3]+x3+x2+x

w:=((xt)*f(t),t=0..x)+x

其中 f(x)=b*(A[3]*x3+A[2]*x2+A[1]*x+A[0])*f(x)+c

特解

A[2]=A[3]=0

f(x)=AiryAi(1.3200061217959123977*x+2.0087049679503014748) *C2+AiryBi(1.3200061217959123977*x+2.0087049679503014748) *C12.2727167324939371067*Pi*((Int(AiryBi(1.3200061217959123977*x+2.0087049679503014748),x))*AiryAi(1.3200061217959123977*x+2.0087049679503014748)+(Int(AiryAi(1.3200061217959123977*x+2.0087049679503014748),x))*AiryBi(1.3200061217959123977*x+2.0087049679503014748))

因此

u=(1/2*(2.3*x+3.5))*y2+y+x3+x2+x


v=((xt)*(AiryAi(1.3200061217959123977*t+2.0087049679503014748)+AiryBi(1.3200061217959123977*t+2.0087049679503014748)2.2727167324939371067*Pi*((Int(AiryBi(1.3200061217959123977*t+2.0087049679503014748),t))*AiryAi(1.3200061217959123977*t+2.0087049679503014748)+(Int(AiryAi(1.3200061217959123977*t+2.0087049679503014748),t))*AiryBi(1.3200061217959123977*t+2.0087049679503014748))),t)+x

参考文献

  1. Theodore von Karman,Enklopedie der mathematischen Wissenshaften, vol 4, p349,1910
  2. Andre Polyanin,Valentin Zaitsev Handbook of Nonlinear Partial Differential Equations, 2nd edition, p1192-1196