二複合二十面體

来自testwiki
跳转到导航 跳转到搜索

Template:NoteTA Template:Infobox polyhedron

完全扭稜八面體, β{3,4}

幾何學中,二複合二十面體是指由2個正二十面體複合而成的複合多面體。這種立體具備八面體群對稱性。[1]

作為完全扭稜立體

二複合二十面體可以視作一種完全扭稜(holosnub)的立體,就類似正四面體可以扭稜成結構等價於正二十面體扭稜四面體一般[2]。作為一個完全扭稜立體的二複合二十面體在施萊夫利符號中可以用β{3,4}表示,在考克斯特符號中可以用Template:CDD表示。其中,符號β表示完全扭稜[2]

對稱性

二複合二十面體由2個正二十面體組成,每個正二十面體由20個三角形組成。這40個三角形在對稱群的群作用下分解為兩條軌道:其中16個三角形兩兩共面落在八面體平面中,而其他24個三角形各自位於獨立的平面中。其他具備二十面體對稱性之立體的二複合體也具有類似特性。[3]

相關多面體

二複合二十面體除了八面群對稱性的複合結構外,還有另外兩種複合結構。[4]

二複合十二面體

Template:Infobox polyhedron 二複合二十面體是二複合十二面體的對偶多面體[3]。二複合十二面體顧名思義即2個正十二面體的複合體。其可以透過將正十二面體沿著內接立方體的4重對稱軸之一旋轉90度產生下一個正十二面體並與原有的正十二面體複合而成。在這個複合體當中8個頂點是原始立方體的頂點,另外24個頂點位於更大立方體的面上。[3]

這個立體的複合方式與五角十二面體的二複合體相同,皆位於對偶位置。同時五角十二面體的二複合體也是黃鐵礦晶型的一種可能結構。[5]

二複合五角十二面體:位於對偶位置的黃鐵礦晶體模型的木質模型

這種複合結構由24組多邊形組成,每組多邊形包含2個不等邊三角形和一個等腰三角形。其中不等邊三角形的一個邊長與等腰三角形的腰長相等,且其長度與二複合體對應的正十二面體邊長相等、第二條邊長為正十二面體邊長的一半、第三條邊長為:[6]

長邊長度=4+52a

等腰三角形的底邊長為:[6]

底邊長=1+52a=φa

則其表面積A為:[6]

A=62(5+5)a222.8254a2

其中a為二複合體對應的正十二面體邊長、φ黃金比例[6]

完全扭稜立體

完全扭稜立體
原像
正四面體

立方體

正八面體

正十二面體

正二十面體
完全扭稜
完全扭稜四面體
β{3,3}

完全扭稜立方體
β{4,3}

二複合二十面體
β{3,4}

完全扭稜十二面體
β{5,3}

完全扭稜二十面體
β{3,5}

參見

參考文獻

Template:Reflist