七角反棱柱
跳转到导航
跳转到搜索
Template:NoteTA Template:Infobox polyhedron 在幾何學中,七角反棱柱又稱為反七角柱或七角反柱是指底為七邊形的反棱柱,側面由三角形組成,若每一個面皆為正多邊形則稱為正七角反棱柱。每個七角反棱柱皆含有16個面[1][2][3],是一種十六面體。
正七角反棱柱是基底為正七邊形的七角反棱柱,其可視為一種半正多面體,施萊夫利符號s{2,7}表示其可以藉由七邊形二面體透過扭稜變換構造。其具有D7對稱群[4],其在Template:En-link中用| 2 2 7表示[5]。
正七角反棱柱
-
正七角反棱柱[6]
當底面為正七邊形時,會具備一些特別的性質
當基底邊長為a的時候:
高:
表面積:
體積:
相關多面體與鑲嵌
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | n |
|---|---|---|---|---|---|---|---|---|---|---|---|
| s{2,4} sr{2,2} |
s{2,6} sr{2,3} |
s{2,8} sr{2,4} |
s{2,10} sr{2,5} |
s{2,12} sr{2,6} |
s{2,14} sr{2,7} |
s{2,16} sr{2,8} |
s{2,18} sr{2,9} |
s{2,20} sr{2,10} |
s{2,22} sr{2,11} |
s{2,24} sr{2,12} |
s{2,2n} sr{2,n} |
| Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
Template:CDD Template:CDD |
| 作為球面鑲嵌 | |||||||||||
在其他領域中
參見
參考文獻
- ↑ Template:Citation.
- ↑ heptagonal antiprism vertices Template:Wayback wolframalpha.com [2014-06-22]
- ↑ net of heptagonal antiprism Template:Wayback korthalsaltes.com [2014-06-22]
- ↑ Melnyk, Theodor William, Osvald Knop, and William Robert Smith. "Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited." Canadian Journal of Chemistry 55.10 (1977): 1745-1761.
- ↑ Heptagonal prisms and antiprisms Template:Wayback umanitoba.ca [2014-6-22]
- ↑ {7}-antiprism Template:Wayback antiprism.com [2014-6-22]
- ↑ Heptagonal Antiprism Template:Wayback dmccooey.com [2014-6-22]
- Fowler, P. W., T. Tarnai, and Zs Gáspár. "From circle packing to covering on a sphere with antipodal constraints." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458.2025 (2002): 2275-2287.
- heptagonal antiprismTemplate:Wayback rediff.com [2014-6-22]
外部連結
- [1]Template:Wayback
- Virtual Reality PolyhedraTemplate:Wayback www.georgehart.com: The Encyclopedia of Polyhedra