七角反棱柱

来自testwiki
跳转到导航 跳转到搜索

Template:NoteTA Template:Infobox polyhedron 在幾何學中,七角反棱柱又稱為反七角柱七角反柱是指底為七邊形反棱柱,側面由三角形組成,若每一個面皆為正多邊形則稱為正七角反棱柱。每個七角反棱柱皆含有16個面[1][2][3],是一種十六面體

正七角反棱柱是基底為正七邊形的七角反棱柱,其可視為一種半正多面體,施萊夫利符號s{2,7}表示其可以藉由七邊形二面體透過扭稜變換構造。其具有D7對稱群[4],其在Template:En-link中用| 2 2 7表示[5]

正七角反棱柱

當底面為正七邊形時,會具備一些特別的性質

當基底邊長為a的時候:

高:12a4secπ14secπ14
表面積:72a2(cotπ7+3)
體積:712a3(cotπ14+cotπ7)114secπ14secπ14

相關多面體與鑲嵌

半正七邊形二面體球面多面體
Template:Link-en[7,2], (*722) [7,2]+, (722)
Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD
Template:AnyLink Template:AnyLink Template:AnyLink 2t{7,2}=t{2,7} Template:AnyLink Template:AnyLink Template:AnyLink Template:AnyLink
半正對偶
Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD Template:CDD
Template:AnyLink Template:AnyLink Template:AnyLink V4.4.7 Template:AnyLink V4.4.7 Template:AnyLink V3.3.3.7
半正反棱柱系列
2 3 4 5 6 7 8 9 10 11 12 n
s{2,4}
sr{2,2}
s{2,6}
sr{2,3}
s{2,8}
sr{2,4}
s{2,10}
sr{2,5}
s{2,12}
sr{2,6}
s{2,14}
sr{2,7}
s{2,16}
sr{2,8}
s{2,18}
sr{2,9}
s{2,20}
sr{2,10}
s{2,22}
sr{2,11}
s{2,24}
sr{2,12}
s{2,2n}
sr{2,n}
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
Template:CDD
作為球面鑲嵌

在其他領域中

參見

參考文獻

  1. Template:Citation.
  2. heptagonal antiprism vertices Template:Wayback wolframalpha.com [2014-06-22]
  3. net of heptagonal antiprism Template:Wayback korthalsaltes.com [2014-06-22]
  4. Melnyk, Theodor William, Osvald Knop, and William Robert Smith. "Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited." Canadian Journal of Chemistry 55.10 (1977): 1745-1761.
  5. Heptagonal prisms and antiprisms Template:Wayback umanitoba.ca [2014-6-22]
  6. {7}-antiprism Template:Wayback antiprism.com [2014-6-22]
  7. Heptagonal Antiprism Template:Wayback dmccooey.com [2014-6-22]
  • Fowler, P. W., T. Tarnai, and Zs Gáspár. "From circle packing to covering on a sphere with antipodal constraints." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458.2025 (2002): 2275-2287.
  • heptagonal antiprismTemplate:Wayback rediff.com [2014-6-22]

外部連結

Template:反棱柱 Template:錐體與柱體