一百萬邊形

来自testwiki
跳转到导航 跳转到搜索

Template:NoteTA Template:Infobox regular polygon幾何學中,一百萬邊形指有1,000,000條邊和1,000,000個頂點多邊形[1][2]

正一百萬邊形

一個正一百萬邊形的每個內角為179.99964°。[1]

一個單位圓的內接正一百萬邊形的周長為:

2000000sinπ1000000

結果十分接近於2π。實際上,與地球大小的圓形之圓周(40075公里)相比,它的內接正一百萬邊形的周長与它相差不到1/16毫米[3]

這個形狀對角線有499998500000條。

如同笛卡爾一千邊形的例子,一百萬邊已被用來作為不能被可視化的明確定義的概念的說明。[4][5][6][7][8][9][10]

參考文獻

Template:Refbegin Template:Reflist Template:Refend

Template:Clear Template:多邊形

  1. 1.0 1.1 Darling, David J., The universal book of mathematics: from Abracadabra to Zeno's paradoxes, John Wiley & Sons, 2004. Page 249. ISBN 0-471-27047-4.
  2. Dugopolski, Mark, College Algebra and Trigonometry, 2nd ed, Addison-Wesley, 1999. Page 505. ISBN 0-201-34712-1.
  3. Williamson, Benjamin, An Elementary Treatise on the Differential Calculus, Longmans, Green, and Co., 1899. Page 45.
  4. McCormick, John Francis, Scholastic Metaphysics, Loyola University Press, 1928, p. 18.
  5. Merrill, John Calhoun and Odell, S. Jack, Philosophy and Journalism, Longman, 1983, p. 47, ISBN 0-582-28157-1.
  6. Hospers, John, An Introduction to Philosophical Analysis, 4th ed, Routledge, 1997, p. 56, ISBN 0-415-15792-7.
  7. Mandik, Pete, Key Terms in Philosophy of Mind, Continuum International Publishing Group, 2010, p. 26, ISBN 1-84706-349-7.
  8. Kenny, Anthony, The Rise of Modern Philosophy, Oxford University Press, 2006, p. 124, ISBN 0-19-875277-6.
  9. Balmes, James, Fundamental Philosophy, Vol II, Sadlier and Co., Boston, 1856, p. 27.
  10. Potter, Vincent G., On Understanding Understanding: A Philosophy of Knowledge, 2nd ed, Fordham University Press, 1993, p. 86, ISBN 0-8232-1486-9.