连续q勒让德多项式

来自testwiki
imported>Walter Grassroot2021年3月23日 (二) 02:54的版本
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

连续勒让德多项式是一个以基本超几何函数定义的正交多项式[1]

Pn(x|q)=4ϕ3(qnqn+1q1/4eiθa1/4eiθqq1/2q;q,q)

极限关系

令连续q勒让德多项式 q->1 得勒让德多项式

limq1Pn(x|q)=Pn(x)

验证5阶连续q勒让德多项式→勒让德多项式

limq1P5(x|q)=P5(x)

由定义, P5(x|q)=1+(1q5)(1q4)(1q3)(1q6)(1q7)(1q8)(1q4(x+i1x2))(1q5/4(x+i1x2))(1q9/4(x+i1x2))(1q4x+i1x2)(1q5/4x+i1x2)(1q9/4x+i1x2)q3(1q)2(1q2)2(1q3)2(1+q)1(1+q3/2)1(1+q5/2)1(1+q)1(1+q2)1(1+q3)1+(1q5)(1q4)(1q3)(1q2)(1q6)(1q7)(1q8)(1q9)(1q4(x+i1x2))(1q5/4(x+i1x2))(1q9/4(x+i1x2))(1q134(x+i1x2))(1q4x+i1x2)(1q5/4x+i1x2)(1q9/4x+i1x2)(1q134(x+i1x2)1)q4(1q)2(1q2)2(1q3)2(1q4)2(1+q)1(1+q3/2)1(1+q5/2)1(1+q7/2)1(1+q)1(1+q2)1(1+q3)1(1+q4)1+(1q5)(1q4)(1q3)(1q2)(1q1)(1q6)(1q7)(1q8)(1q9)(1q10)(1q4(x+i1x2))(1q5/4(x+i1x2))(1q9/4(x+i1x2))(1q134(x+i1x2))(1q174(x+i1x2))(1q4x+i1x2)(1q5/4x+i1x2)(1q9/4x+i1x2)(1q134(x+i1x2)1)(1q174(x+i1x2)1)q5(1q)2(1q2)2(1q3)2(1q4)2(1q5)2(1+q)1(1+q3/2)1(1+q5/2)1(1+q7/2)1(1+q9/2)1(1+q)1(1+q2)1(1+q3)1(1+q4)1(1+q5)1q5/4(1q)2(1+q)(1+q)(x+i1x2)q5/4(x+i1x2)(1q)2(1+q)(1+q)+q294(1q)2(1+q)1(1+q)1(x+i1x2)1+q294(x+i1x2)(1q)2(1+q)1(1+q)1+q154(1q)2(1+q)1(1+q)1(x+i1x2)1+(x+i1x2)q154(1q)2(1+q)1(1+q)1q9/4(1q)2(1+q)(1+q)(x+i1x2)q9/4(x+i1x2)(1q)2(1+q)(1+q)+(1q5)(1q4)(1q6)(1q7)(1q4(x+i1x2))(1q5/4(x+i1x2))(1q4x+i1x2)(1q5/4x+i1x2)q2(1q)2(1q2)2(1+q)1(1+q3/2)1(1+q)1(1+q2)1+q(1q)2(1+q)(1+q)+q3/2(1q)2(1+q)(1+q)q7(1q)2(1+q)(1+q)q15/2(1q)2(1+q)(1+q)1q4(1q)2(1+q)(1+q)1q7/2(1q)2(1+q)(1+q)+q2(1q)2(1+q)(1+q)+q5/2(1q)2(1+q)(1+q)

求 q→1 的极限值: limq1P5(x|q)=638x5354x3+158x

而5阶勒让德多项式为: P5(x)=638x5354x3+158x

两者显然相等,所以 limq1P5(x|q)=P5(x)

验证毕

图集

CONTINUOUS Q-LEGENDER POLYNOMIALS ABS COMPLEX 3D MAPLE PLOT
CONTINUOUS Q-LEGENDER POLYNOMIALS IM COMPLEX 3D MAPLE PLOT
CONTINUOUS Q-LEGENDER POLYNOMIALS RE COMPLEX 3D MAPLE PLOT
CONTINUOUS Q-LEGENDER POLYNOMIALS ABS DENSITY MAPLE PLOT
CONTINUOUS Q-LEGENDER POLYNOMIALS IM DENSITY MAPLE PLOT
CONTINUOUS Q-LEGENDER POLYNOMIALS RE DENSITY MAPLE PLOT

参考文献

  1. Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p475,Springer,2010

Template:Q超几何函数