長球波函數

来自testwiki
imported>InternetArchiveBot2023年10月14日 (六) 17:57的版本 (补救0个来源,并将1个来源标记为失效。) #IABot (v2.0.9.5)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转到导航 跳转到搜索

在數學中,長球波函數由一個限時、限頻、與第二個限時的函數相乘而成。假定QT表示一個切截時間的運算器,且x=QTx,則x必為有限時間區間的函數,當x在[T/2;T/2]的區間內。同理,假定PW表示一個理想的低頻濾波器,且x=PWx,則x必為有限頻寬區間的函數,當x在[W;W]的區間內。透過組合上述運算子,使得QTPWQT轉變成線性、有界Template:Le的運算式。對於n=1,2,,我們假設ψn為第n項的本徵函數,定義下列函式

 QTPWQTψn=λnψn,

其中{λn}n為對應的本徵值。此時限函數{ψn}n即為長球波函數(PSWFs).在此領域中,幾個非常重要的先驅文章由Slepian and Pollak,[1] Landau and Pollak,[2][3] and Slepian.[4][5]所提出。

這些函數有些不同的意涵,當在解亥姆霍兹方程ΔΦ+k2Φ=0,透過在長球面坐標系做變數分離,使得(ξ,η,ϕ)各代表:

 x=(d/2)ξη,
 y=(d/2)(ξ21)(1η2)cosϕ,
 z=(d/2)(ξ21)(1η2)sinϕ,
 ξ>=1 and |η|<=1.

得到解Φ(ξ,η,ϕ)為長球波函數Rmn(c,ξ)與角球波函數Smn(c,η)的成積乘上eimϕ. 這裡的變數c可定義為c=kd/2, with d為長球的橢圓截面的兩焦點的距離。

徑向波(The radial wave function)Rmn(c,ξ)滿足線性常微分方程:

 (ξ21)d2Rmn(c,ξ)dξ2+2ξdRmn(c,ξ)dξ(λmn(c)c2ξ2+m2ξ21)Rmn(c,ξ)=0

此本徵值λmn(c)Sturm-Liouville 微分方程中已被固定,透過設定Rmn(c,ξ)為有限函數,當 |ξ|1+.

角波函數滿足下列微分方程:

 (η21)d2Smn(c,η)dη2+2ηdSmn(c,η)dη(λmn(c)c2η2+m2η21)Smn(c,η)=0

這跟徑向波函數式為同樣的微分方程。然而,這兩式的變數的範圍是不同的(在徑向波函數中ξ>=1),在角波函數中|η|<=1)。

當給定c=0,這兩個微分方程可以簡化成滿足伴隨勒讓德多項式的式子。當給定c0,角波函數可被展開成勒讓德級數。

注意,如果我們將角波函數寫成Smn(c,η)=(1η2)m/2Ymn(c,η),函數Ymn(c,η)將滿足以下線性微分方程:

 (1η2)d2Ymn(c,η)dη22(m+1)ηdYmn(c,η)dη+(c2η2+m(m+1)λmn(c))Ymn(c,η)=0,

此函數為球波函數。這個輔助方程式在Stratton[6] 1935年的文章被當作例子。

現存不少不同的球函數標準化的方法,在Abramowitz and Stegun.[7]的文章中有整理的表格。Abramowitz跟Stegun(以及現在的相關文章)都沿用Flammer當初提出來的符號[8]

一開始,球波函數是由C. Niven,[9]提出,他在球座標上引入Helmholtz方程式。許多專題論文已經探討出球波函數的很多面向,例如Strutt,[10] Stratton et al.,[11] Meixner and Schafke,[12] and Flammer.[8]等人的作品。

Flammer[8]提供了一個完整的討論,計算出長球與扁球的本徵值、角波函數與徑函數。許多電腦程式已經因應發展出來,其中包含King與其團隊,[13] Patz和Van Buren,[14] Baier與其團隊,[15] Zhang和Jin,[16] Thompson,[17]、Falloon.[18] Van Buren和Boisvert[19][20]最近發展出新的方法去計算出長球波函數,延伸了數值解的能力,能運算極廣的變數範圍。Fortran原始碼結合了新的結果與傳統的方法,可見於http://www.mathieuandspheroidalwavefunctions.com.。 Template:Wayback

Flammer,[8] Hunter,[21][22] Hanish et al.,[23][24][25] and Van Buren et al.[26]等人也提出了數值解的整理表格。

NIST提供的DLMF(Digital Library of Mathematical Functions)(-{R|http://dlmf.nist.gov)是個了解球波函數的良好資源。}-Template:Dead link

關於值域落在單位球的表面的長球波函數,我們通稱為"Slepian functions"[27] (另見「頻譜集中問題」)。這函數存在非常多的應用,像是大地測量[28]以及宇宙學.[29]

參考文獻

Template:Reflist

外部連結

  1. D. Slepian and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - ITemplate:Dead link Bell System Technical Journal 40 (1961)
  2. H. J. Landau and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IITemplate:Dead link Bell System Technical Journal 40 (1961)
  3. H. J. Landau and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty -- III: The Dimension of the Space of Essentially Time- and Band-Limited SignalsTemplate:Dead link Bell System Technical Journal 41 (1962)
  4. D. Slepian Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IV: Extensions to Many Dimensions; Generalized Prolate Spheroidal FunctionsTemplate:Dead link Bell System Technical Journal 43 (1964)
  5. D. Slepian. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty - V: The Discrete CaseTemplate:Dead link Bell System Technical Journal 57 (1978)
  6. J. A. Stratton Spheroidal functions Template:Wayback Proceedings of the National Academy of Sciences (USA) 21, 51 (1935)
  7. . M. Abramowitz and I. Stegun. Handbook of Mathematical Functions pp. 751-759 Template:Wayback (Dover, New York, 1972)
  8. 8.0 8.1 8.2 8.3 C. Flammer. Spheroidal Wave Functions Stanford University Press, Stanford, CA, 1957
  9. C. Niven )On the conduction of heat in ellipsoids of revolution. Template:Wayback Philosophical transactions of the Royal Society of London, 171 p. 117 (1880)
  10. M. J. O. Strutt. Lamesche, Mathieusche and Verdandte Funktionen in Physik und Technik Ergebn. Math. u. Grenzeb, 1, pp. 199-323, 1932
  11. J. A. Stratton, P. M. Morse, J. L. Chu, and F. J. Corbato. Spheroidal Wave Functions Wiley, New York, 1956
  12. J. Meixner and F. W. Schafke. Mathieusche Funktionen und Sphäroidfunktionen Springer-Verlag, Berlin, 1954
  13. B. J. King, R. V. Baier, and S Hanish A Fortran computer program for calculating the prolate spheroidal radial functions of the first and second kind and their first derivatives. Template:Wayback (1970)
  14. B. J. Patz and A. L. Van Buren A Fortran computer program for calculating the prolate spheroidal angular functions of the first kind. Template:Wayback (1981)
  15. R. V. Baier, A. L. Van Buren, S. Hanish, B. J. King - Spheroidal wave functions: their use and evaluation Template:Wayback The Journal of the Acoustical Society of America, 48, pp. 102–102 (1970)
  16. S. Zhang and J. Jin. Computation of Special Functions, Wiley, New York, 1996
  17. W. J. Thomson Spheroidal Wave functions Template:Webarchive Computing in Science & Engineering p. 84, May–June 1999
  18. P. E. Falloon Thesis on numerical computation of spheroidal functions Template:Webarchive University of Western Australia, 2002
  19. A. L. Van Buren and J. E. Boisvert. Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives, Quarterly of Applied Mathemathics 60, pp. 589-599, 2002
  20. A. L. Van Buren和J. E. Boisvert. Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives, Quarterly of Applied Mathematics 62, pp. 493-507, 2004
  21. H. E. Hunter Tables of prolate spheroidal functions for m=0: Volume I. Template:Wayback (1965)
  22. H. E. Hunter Tables of prolate spheroidal functions for m=0 : Volume II. Template:Wayback (1965)
  23. S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 1, prolate, m = 0Template:Dead link (1970)
  24. S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 2, prolate, m = 1 Template:Wayback (1970)
  25. S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King Tables of radial spheroidal wave functions, volume 3, prolate, m = 2 Template:Wayback (1970)
  26. A. L. Van Buren, B. J. King, R. V. Baier, and S. Hanish. Tables of angular spheroidal wave functions, vol. 1, prolate, m = 0, Naval Research Lab. Publication, U. S. Govt. Printing Office, 1975
  27. F. J. Simons, M. A. Wieczorek and F. A. Dahlen. Spatiospectral concentration on a sphere. SIAM Review, 2006, Template:Doi
  28. F. J. Simons and Dahlen, F. A. Spherical Slepian functions and the polar gap in Geodesy. Geophysical Journal International, 2006, Template:Doi
  29. F. A. Dahlen和F. J. Simons. Spectral estimation on a sphere in geophysics and cosmology. Geophysical Journal International, 2008, Template:Doi