查看“︁HP滤波”︁的源代码
←
HP滤波
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''HP滤波'''({{lang-en|Hodrick–Prescott filter}}或{{lang|en|Hodrick–Prescott decomposition}})是[[宏观经济学]]中用到的[[时间序列]]分析方法,尤其在{{tsl|en|real business cycle theory|实际经济周期理论}}中较为常用。HP滤波可以从原始数据中分离出周期性的部分,并得到一条平滑的曲线来表述整个时间序列,即把对短期波动更敏感的数据转成了对长期波动更敏感的表示方式,改变乘数<math>\lambda</math>可以调整其敏感程度。20世纪90年代,两位经济学家{{tsl|en|Robert J. Hodrick|罗伯特·霍德里克}}和[[诺贝尔经济学奖|诺贝尔奖得主]][[爱德华·普雷斯科特]]发表了这种方法并受到学界欢迎。<ref name="hp">{{cite journal |last=Hodrick |first=Robert |first2=Edward C. |last2=Prescott |year=1997 |title=Postwar U.S. Business Cycles: An Empirical Investigation |url=https://archive.org/details/sim_journal-of-money-credit-and-banking_1997-02_29_1/page/n4 |journal=Journal of Money, Credit, and Banking |volume=29 |issue=1 |pages=1–16 |jstor=2953682 }}</ref>不过实际上早在1923年{{tsl|en|E. T. Whittaker|惠特克}}就首次发表了该方法<ref>{{cite journal |last=Whittaker |first=E. T. |year=1923 |title=On a New Method of Graduation |journal=Proceedings of the Edinburgh Mathematical Association |volume=41 |issue= |pages=63–75 |doi=10.1017/S001309150000359X }} - as quoted in [http://cowles.econ.yale.edu/P/cd/d17b/d1771.pdf Philips 2010] {{Wayback|url=http://cowles.econ.yale.edu/P/cd/d17b/d1771.pdf |date=20120417132021 }}</ref>。 == 数学表述 == 这个方法的思想类似于{{tsl|en|decomposition of time series|时间序列分解}}。令<math>\{y_t\},\ t = 1, 2, ..., T\,</math>表示一组[[时间序列]]变量的[[对数]],则<math>\{y_t\}</math>由一系列趋势项<math>\tau_t</math>、周期项<math>c_t</math>和误差项<math>\epsilon_t</math>组成,即<math>y_t\ = \tau_t\ + c_t\ + \epsilon_t</math>。<ref>Kim, Hyeongwoo. "[http://www.auburn.edu/~hzk0001/hpfilter.pdf Hodrick–Prescott Filter] {{Wayback|url=http://www.auburn.edu/~hzk0001/hpfilter.pdf |date=20160311083655 }}" March 12, 2004</ref>给定合适的正数<math>\lambda</math>,存在一个趋势项满足 : <math>\min_{\tau}\left(\sum_{t = 1}^T {(y_t - \tau _t )^2 } + \lambda \sum_{t = 2}^{T - 1} {[(\tau _{t+1} - \tau _t) - (\tau _t - \tau _{t - 1} )]^2 }\right)</math>。 上式第一项表示变量偏离趋势项的误差<math>d_t=y_t-\tau_t</math>的平方和,从而控制了周期项的大小;第二项用乘子<math>\lambda</math>乘上趋势项二阶[[差分]]的平方和,从而控制了趋势项变化的剧烈程度。<math>\lambda</math>越大,后者的控制就越强。霍德里克和普雷斯科特建议季度数据<math>\lambda</math>取为1600,若单位不是季度则<math>\lambda</math>正比于每单位所含季度数的平方,即年度数据取100、月度数据取14,400。<ref name="hp" />雷文(Ravn)和乌利希(Uhlig)则在2002年发表的文章中提出<math>\lambda</math>应该正比于数据每单位所含季度数的四次方,即年度数据<math>\lambda</math>应取6.25、月度数据取129,600。<ref>{{cite journal | last1=Ravn | first1=Morten | last2=Uhlig | first2=Harald | title=On adjusting the Hodrick–Prescott filter for the frequency of observations | journal=The Review of Economics and Statistics | year=2002 | number=2 | volume=84 | pages=371 | doi=10.1162/003465302317411604 | url=https://www.econstor.eu/bitstream/10419/75742/1/cesifo_wp479.pdf | access-date=2019-07-06 | archive-date=2019-03-29 | archive-url=https://web.archive.org/web/20190329093302/https://www.econstor.eu/bitstream/10419/75742/1/cesifo_wp479.pdf | dead-url=no }}</ref> 麦克尔罗伊的一篇论文中给出了双侧HP滤波[[谱分解]]的精确数学表达式<ref>{{cite journal | last1= McElroy | title=Exact Formulas for the Hodrick-Prescott Filter | journal=Econometrics Journal | year=2008 | volume=11 | pages = 209–217 | doi=10.1111/j.1368-423x.2008.00230.x }}</ref>。 == 评价 == HP滤波很容易实现,不过它也存在一定缺陷,只在以下严苛条件下才能做出最优估计:<ref>{{cite journal |last=French |first=Mark W. |title=Estimating Changes in Trend Growth of Total Factor Productivity: Kalman and H-P Filters versus a Markov-Switching Framework |work=FEDS Working Paper No. 2001-44 |year=2001 |ssrn=293105 }}</ref> * 时间序列是{{tsl|en|Order of integration|二阶整合}}的<ref>{{cite journal |author1=Carvalho V, Harvey A, Trimbur T |title=A note on common cycles, common trends, and convergence |journal=Journal of Business & Economic Statistics |date=2007 |volume=25 |issue=1 |page=12-20 |doi=10.1198/073500106000000431 |url=https://www.cass.city.ac.uk/__data/assets/pdf_file/0007/36565/WP-CEA-04-2006.pdf |access-date=2019-07-06 |archive-date=2019-07-06 |archive-url=https://web.archive.org/web/20190706045052/https://www.cass.city.ac.uk/__data/assets/pdf_file/0007/36565/WP-CEA-04-2006.pdf |dead-url=no }}</ref>,否则HP滤波会得到偏离实际情况的趋势项。 ** 如果发生了单次的永久性冲击(permanent shock)或存在稳定的趋势增长率,HP滤波得到的周期项也会扭曲。 * 样本中的周期项是[[白噪音]],或者趋势项和周期项中的随机变化机制相同。 标准的双侧HP滤波不应该用来估计基于递归状态空间表达的DSGE模型,这是因为HP滤波使用未来的观测<math>t+i, i>0 </math>去构造当前时间点<math>t</math>的结果,但递归状态空间要求当前的观测仅基于当前和过去的状态。要解决这个问题,可以使用单侧HP滤波。<ref>{{cite journal | last1= Stock | last2=Watson | title=Forecasting Inflation | url= https://archive.org/details/sim_journal-of-monetary-economics_1999-10_44_2/page/293 | journal=Journal of Monetary Economics | year=1999 | volume=44 | pages = 293–335 | doi=10.1016/s0304-3932(99)00027-6 }}</ref> == 参见 == * [[带通滤波器]] * [[卡尔曼滤波]] == 参考文献 == {{Reflist}} == 拓展阅读 == * {{cite book |last=Enders |first=Walter |chapter=Trends and Univariate Decompositions |title=Applied Econometric Time Series |url=https://archive.org/details/appliedeconometr0000ende |location=New York |publisher=Wiley |year=2010 |edition=Third |isbn=978-0470-50539-7 |pages=[https://archive.org/details/appliedeconometr0000ende/page/247 247]–7 }} * {{cite book |last=Favero |first=Carlo A. |title=Applied Macroeconometrics |url=https://books.google.com/books?id=PBToVOKpyL4C&pg=PA54 |location=New York |publisher=Oxford University Press |year=2001 |isbn=0-19-829685-1 |pages=54–5 |access-date=2019-07-06 |archive-date=2020-09-22 |archive-url=https://web.archive.org/web/20200922111944/https://books.google.com/books?id=PBToVOKpyL4C&pg=PA54 |dead-url=no }} * {{cite book |last=Mills |first=Terence C. |chapter=Filtering Economic Time Series |title=Modelling Trends and Cycles in Economic Time Series |url=https://archive.org/details/modellingtrendsc0000mill |location=New York |publisher=Palgrave McMillan |edition= |year=2003 |isbn=1-4039-0209-7 |pages=[https://archive.org/details/modellingtrendsc0000mill/page/75 75]–102 }} == 外部链接 == *[http://dge.repec.org/codes/prescott/hpfilter.for 普雷斯科特给出的Fortran代码]{{Wayback|url=http://dge.repec.org/codes/prescott/hpfilter.for |date=20160306023050 }} *[http://www.mathworks.com/matlabcentral/fileexchange/3972-hodrick-prescott-filter Matlab实现]{{Wayback|url=http://www.mathworks.com/matlabcentral/fileexchange/3972-hodrick-prescott-filter |date=20190329093311 }} *[https://ideas.repec.org/c/dge/qmrbcd/181.html 单侧HP滤波的Matlab实现]{{Wayback|url=https://ideas.repec.org/c/dge/qmrbcd/181.html |date=20190329093300 }} *[https://cran.r-project.org/web/packages/mFilter/mFilter.pdf R语言实现的HP滤波,包名mFilter]{{Wayback|url=https://cran.r-project.org/web/packages/mFilter/mFilter.pdf |date=20190329093306 }} *[http://jaac.wz.cz/hponlineapp.php 在线进行HP滤波]{{Wayback|url=http://jaac.wz.cz/hponlineapp.php |date=20190727140154 }} [[Category:时间序列]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Tsl
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
HP滤波
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息