查看“︁高斯二项式系数”︁的源代码
←
高斯二项式系数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{expand|time=2013-10-23T03:43:40+00:00}} '''高斯二项式系数''' (也称作 '''高斯系数''', '''高斯多项式''', 或 '''''q''-二项式系数''')在[[数学]]里是指[[二项式系数]]的[[q-模拟]]。 ==定义== 高斯二项式系数被定义为: <math>{m \choose r}_q = \begin{cases} \frac{(1-q^m)(1-q^{m-1})\cdots(1-q^{m-r+1})} {(1-q)(1-q^2)\cdots(1-q^r)} & r \le m \\ 0 & r>m \end{cases}</math> 其中, ''m'' 和 ''r'' 是非负整数。 当 {{nowrap|''r'' {{=}} 0}}时值为1。 高斯二项式系数计算一个有限维[[向量空间]]的子空间数。令''q''表示一个[[有限域]]里的元素数目,则在''q''元有限域上''n''维向量空间的''k''维子空间数等于 :<math> \binom nk_q. </math> ==示例== :<math>{0 \choose 0}_q = {1 \choose 0}_q = 1</math> :<math>{1 \choose 1}_q = \frac{1-q}{1-q}=1</math> :<math>{2 \choose 1}_q = \frac{1-q^2}{1-q}=1+q</math> :<math>{3 \choose 1}_q = \frac{1-q^3}{1-q}=1+q+q^2</math> :<math>{3 \choose 2}_q = \frac{(1-q^3)(1-q^2)}{(1-q)(1-q^2)}=1+q+q^2</math> :<math>{4 \choose 2}_q = \frac{(1-q^4)(1-q^3)}{(1-q)(1-q^2)}=(1+q^2)(1+q+q^2)=1+q+2q^2+q^3+q^4</math> ==性质== 和普通二项式系数一样, 高斯二项式系数是中心对称的: :<math>{m \choose r}_q = {m \choose m-r}_q. </math> 特别地, :<math>{m \choose 0}_q ={m \choose m}_q=1 \, ,</math> :<math>{m \choose 1}_q ={m \choose m-1}_q=\frac{1-q^m}{1-q}=1+q+ \cdots + q^{m-1} \quad m \ge 1 \, .</math> 当 {{nowrap|''q'' {{=}} 1}} 时,有 :<math>{m \choose r}_1 = {m \choose r}</math> ==参考文献== *Exton, H. (1983), ''q-Hypergeometric Functions and Applications'', New York: Halstead Press, Chichester: Ellis Horwood, 1983, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538 * {{cite web |first1 = Eugene |last1 = Mukhin |url = http://mathcircle.berkeley.edu/BMC3/SymPol.pdf |title = Symmetric Polynomials and Partitions |deadurl = yes |archiveurl = https://web.archive.org/web/20041210092438/http://mathcircle.berkeley.edu/BMC3/SymPol.pdf |archivedate = 2004-12-10 }} (undated, 2004 or earlier). * Ratnadha Kolhatkar, [http://www.math.mcgill.ca/goren/SeminarOnCohomology/GrassmannVarieties%20.pdf Zeta function of Grassmann Varieties] {{Wayback|url=http://www.math.mcgill.ca/goren/SeminarOnCohomology/GrassmannVarieties%20.pdf |date=20210227014753 }} (dated January 26, 2004) * {{MathWorld| urlname=q-BinomialCoefficient|title=q-Binomial Coefficient}} * {{cite journal |first1=Henry |last1=Gould |journal=[[Fibonacci Quarterly]] |year=1969 |title=The bracket function and Fontene-Ward generalized binomial coefficients with application to Fibonomial coefficients |url=https://archive.org/details/sim_fibonacci-quarterly_1969-02_7_1/page/23 |mr=0242691 |volume=7 |pages=23–40 }} * {{cite journal |first1= G. L. |last1=Alexanderson |journal=[[Fibonacci Quarterly]] |year=1974 |volume=12 |title=A Fibonacci analogue of Gaussian binomial coefficients |url= https://archive.org/details/sim_fibonacci-quarterly_1974-04_12_2/page/129 |mr=0354537 |pages=129–132 }} * {{cite journal |first1=George E. |last1=Andrews |author1-link=George Andrews (mathematician) |title=Applications of basic hypergeometric functions |journal=SIAM Rev. |year=1974 |volume=16 |number=4 |jstor=2028690 |mr=0352557 |doi=10.1137/1016081 }} * {{cite journal |first1=Peter B. |last1=Borwein |title=Padé approximants for the q-elementary functions |journal=Construct. Approx. |year=1988 |volume=4 |number=1 |pages=391–402 |doi=10.1007/BF02075469 |mr=0956175 }} * {{cite journal |first1=John |last1=Konvalina |title=Generalized binomial coefficients and the subset-subspace problem |journal=Adv. Appl. Math. |year=1998 |doi=10.1006/aama.1998.0598 |volume=21 |pages=228–240 |mr=1634713 }} * {{cite journal |first1=A. |last1=Di Bucchianico |title=Combinatorics, computer algebra and the Wilcoxon-Mann-Whitney test |journal=J. Stat. Plann. Inf. |year=1999 |doi=10.1016/S0378-3758(98)00261-4 |volume=79 |pages=349–364 }} * {{ cite journal |first1=John |last1=Konvalina |title=A unified interpretation of the Binomial Coefficients, the Stirling numbers, and the Gaussian coefficients |journal=Am. Math. Monthly |jstor=2695583 |year=2000 |pages=901–910 |volume=107 |number=10 |mr=1806919 }} * {{cite journal |first1=Boris A. |last=Kupershmidt |title=q-Newton binomial: from Euler to Gauss |journal=J. Nonlin. Math. Phys. |year=2000 |volume=7 |number=2 |pages=244–262 |mr=1763640 |bibcode=2000JNMP....7..244K |arxiv = math/0004187 |doi = 10.2991/jnmp.2000.7.2.11 }} * {{ cite journal |first1=Henry |last1=Cohn |journal=Am. Math. Monthly |year=2004 |title=Projective geometry over F1 and the Gaussian Binomial Coefficients |volume=111 |number=6 |jstor=4145067 |mr=2076581 |pages=487–495 }} * {{cite journal |first1=T. |last1=Kim |title=q-Extension of the Euler formula and trigonometric functions |journal=Russ. J. Math. Phys. |volume=14 |number=3 |pages=-275–278 |year=2007 |doi=10.1134/S1061920807030041 |mr=2341775 |bibcode = 2007RJMP...14..275K }} * {{cite journal |first1=T. |last1=Kim |title=q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients |journal = Russ. J. Math. Phys. |volume=15 |number=1 |pages=51–57 |doi=10.1134/S1061920808010068 |mr=2390694 |year=2008}} * {{cite journal |first1=Roberto B. |last1=Corcino |title= On p,q-binomial coefficients |journal=Integers |volume=8 |year=2008 |pages=#A29 |mr=2425627 }} * {{cite web |first1=Gevorg |last1=Hmayakyan |url=http://ghmath.files.wordpress.com/2010/06/mobius.pdf |title=Recursive Formula Related To The Mobius Function |access-date=2013-10-22 |archive-date=2021-05-06 |archive-url=https://web.archive.org/web/20210506234356/https://ghmath.files.wordpress.com/2010/06/mobius.pdf |dead-url=no }} (2009). [[Category:Q-analogs]] [[Category:Factorial and binomial topics]]
该页面使用的模板:
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Expand
(
查看源代码
)
Template:MathWorld
(
查看源代码
)
Template:Nowrap
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
高斯二项式系数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息