查看“︁铁木辛柯梁理论”︁的源代码
←
铁木辛柯梁理论
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
<!--{{Continuum mechanics|cTopic=[[Solid mechanics]]}}--> '''铁木辛柯梁'''是20世纪早期由美籍俄裔科学家与工程师[[斯蒂芬·铁木辛柯]]提出并发展的力学模型。<ref name=Timo1>Timoshenko, S. P., 1921, ''On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section'', Philosophical Magazine, p. 744.</ref><ref name=Timo2>Timoshenko, S. P., 1922, ''On the transverse vibrations of bars of uniform cross-section'', Philosophical Magazine, p. 125.</ref>模型考虑了[[剪应力]]和[[转动惯量|转动惯性]],使其适于描述短梁、层合梁以及[[波长]]接近厚度的[[頻率 (物理學)|高频]]激励时梁的表现。结果方程有4阶,但不同于一般的梁理论,如[[歐拉-伯努力棟樑方程|欧拉-伯努利梁理论]],还有一个2阶空间导数呈现。实际上,考虑了附加的变形机理有效地降低了梁的[[刚度]],结果在一稳态载荷下[[挠度]]更大,在一组给定的边界条件时预估[[固有频率]]更低。后者在高频即波长更短时效果更明显,反向剪力距离缩短时也有同样效果。 [[Image:TimoshenkoBeam.svg|thumb|400px|铁木辛柯梁(蓝)的变形与欧拉-伯努利梁(红)的对比]] 如果梁材料的[[剪切模量]]接近无穷,即此时梁为剪切[[刚体]],并且忽略转动惯性,则铁木辛柯梁理论趋同于一般梁理论。 == 控制方程 == === 准静态铁木辛柯梁 === [[Image:Plate theory.svg|thumb|200px|铁木辛柯梁的变形。<math>\theta_x = \varphi(x)</math>不等于<math>dw/dx</math>。]] 在[[静力学]]中铁木辛柯梁理论没有轴向影响,假定梁的位移服从于 :<math> u_x(x,y,z) = -z~\varphi(x) ~;~~ u_y(x,y,z) = 0 ~;~~ u_z(x,y) = w(x) </math> 式中<math>(x,y,z)</math>是梁上一点的坐标,<math>u_x, u_y, u_z</math>是位移矢量的三维坐标分量,<math>\varphi</math>是对于梁的中性面的法向转角,<math>w</math>是中性面的在<math>z</math>方向的位移。 控制方程是以下[[常微分方程]]的解耦系统: :<math> \begin{align} & \frac{\mathrm{d}^2}{\mathrm{d} x^2}\left(EI\frac{\mathrm{d} \varphi}{\mathrm{d} x}\right) = q(x,t) \\ & \frac{\mathrm{d} w}{\mathrm{d} x} = \varphi - \frac{1}{\kappa AG} \frac{\mathrm{d}}{\mathrm{d} x}\left(EI\frac{\mathrm{d} \varphi}{\mathrm{d} x}\right). \end{align} </math> 静态条件下的铁木辛柯梁理论,若在以下條件成立時,等同于欧拉-伯努利梁理论 :<math> \frac{EI}{\kappa L^2 A G} \ll 1 </math> 此時,可忽略上面控制方程的最后一项,得到有效的近似,式中<math>L</math>是梁的长度。 对于等截面均匀梁,合并以上两个方程, :<math> EI~\cfrac{\mathrm{d}^4 w}{\mathrm{d} x^4} = q(x) - \cfrac{EI}{\kappa A G}~\cfrac{\mathrm{d}^2 q}{\mathrm{d} x^2} </math> <!-- :{| class="toccolours collapsible collapsed" width="60%" style="text-align:left" !Derivation of quasistatic Timoshenko beam equations |- |From the kinematic assumptions for a Timoshenko beam, the displacements of the beam are given by :<math> u_x(x,y,z,t) = -z~\varphi(x,t) ~;~~ u_y(x,y,z,t) = 0 ~;~~ u_z(x,y,z) = w(x,t) </math> Then, from the strain-displacement relations for small strains, the non-zero strains based on the Timoshenko assumptions are :<math> \varepsilon_{xx} = \frac{\partial u_x}{\partial x} = -z~\frac{\partial \varphi}{\partial x} ~;~~ \varepsilon_{xz} = \frac{1}{2}\left(\frac{\partial u_x}{\partial z}+\frac{\partial u_z}{\partial x}\right) = \frac{1}{2}\left(-\varphi + \frac{\partial w}{\partial x}\right) </math> Since the actual shear strain in the beam is not constant over the cross section we introduce a correction factor <math>\kappa</math> such that :<math> \varepsilon_{xz} = \frac{1}{2}~\kappa~\left(-\varphi + \frac{\partial w}{\partial x}\right) </math> The variation in the internal energy of the beam is :<math> \delta U = \int_L \int_A (\sigma_{xx}\delta\varepsilon_{xx} + 2\sigma_{xz}\delta\varepsilon_{xz})~\mathrm{d}A~\mathrm{d}L = \int_L \int_A \left[-z~\sigma_{xx}\frac{\partial (\delta\varphi)}{\partial x} + \sigma_{xz}~\kappa\left(-\delta\varphi + \frac{\partial (\delta w)}{\partial x}\right)\right]~\mathrm{d}A~\mathrm{d}L </math> Define :<math> M_{xx} := \int_A z~\sigma_{xx}~\mathrm{d}A ~;~~ Q_x := \kappa~\int_A \sigma_{xz}~\mathrm{d}A </math> Then :<math> \delta U = \int_L \left[-M_{xx}\frac{\partial (\delta\varphi)}{\partial x} + Q_{x}\left(-\delta\varphi + \frac{\partial (\delta w)}{\partial x}\right)\right]~\mathrm{d}L </math> Integration by parts, and noting that because of the boundary conditions the variations are zero at the ends of the beam, leads to :<math> \delta U = \int_L \left[\left(\frac{\partial M_{xx}}{\partial x} - Q_x\right)~\delta\varphi - \frac{\partial Q_{x}}{\partial x}~\delta w\right]~\mathrm{d}L </math> The variation in the external work done on the beam by a transverse load <math>q(x,t)</math> per unit length is :<math> \delta W = \int_L q~\delta w~\mathrm{d}L </math> Then, for a quasistatic beam, the principle of virtual work gives :<math> \delta U = \delta W \implies \int_L \left[\left(\frac{\partial M_{xx}}{\partial x} - Q_x\right)~\delta\varphi - \left(\frac{\partial Q_{x}}{\partial x} + q\right)~\delta w\right]~\mathrm{d}L = 0 </math> The governing equations for the beam are, from the fundamental theorem of variational calculus, :<math> \frac{\partial M_{xx}}{\partial x} - Q_x = 0 ~;~~ \frac{\partial Q_{x}}{\partial x} + q = 0 </math> For a linear elastic beam :<math> \begin{align} M_{xx} & = \int_A z~\sigma_{xx}~\mathrm{d}A = \int_A z~E~\varepsilon_{xx}~\mathrm{d}A = -\int_A z^2~E~\frac{\partial \varphi}{\partial x}~\mathrm{d}A = -EI~\frac{\partial \varphi}{\partial x} \\ Q_{x} & = \int_A \sigma_{xz}~\mathrm{d}A = \int_A 2G~\varepsilon_{xz}~\mathrm{d}A = \int_A \kappa~G~\left(-\varphi + \frac{\partial w}{\partial x}\right)~\mathrm{d}A = \kappa~AG~\left(-\varphi + \frac{\partial w}{\partial x}\right) \end{align} </math> Therefore the governing equations for the beam may be expressed as :<math> \begin{align} \frac{\partial }{\partial x}\left(EI\frac{\partial \varphi}{\partial x}\right) + \kappa AG~\left(\frac{\partial w}{\partial x}-\varphi\right) & = 0 \\ \frac{\partial }{\partial x}\left[\kappa AG\left(\frac{\partial w}{\partial x} - \varphi\right)\right] + q & = 0 \end{align} </math> Combining the two equations together gives :<math> \begin{align} & \frac{\partial^2 }{\partial x^2}\left(EI\frac{\partial \varphi}{\partial x}\right) = q \\ & \frac{\partial w}{\partial x} = \varphi - \cfrac{1}{\kappa AG}~\frac{\partial }{\partial x}\left(EI\frac{\partial \varphi}{\partial x}\right) \end{align} </math> |} --> === 动态铁木辛柯梁 === 在铁木辛柯梁理论中若不考虑轴向影响,则给出梁的位移 :<math> u_x(x,y,z,t) = -z~\varphi(x,t) ~;~~ u_y(x,y,z,t) = 0 ~;~~ u_z(x,y,z,t) = w(x,t) </math> 式中<math>(x,y,z)</math>是梁内一点的坐标,<math>u_x, u_y, u_z</math>是位移矢量的三维坐标分量,<math>\varphi</math>是对于梁的中性面的法向转角,<math>w</math>是中性面<math>z</math>方向的位移. 从以上假设,铁木辛柯梁,考虑到振动,要用线性耦合[[偏微分方程]]描述:<ref>{{Cite web |url=http://ccrma.stanford.edu/~bilbao/master/node163.html |title=Timoshenko's Beam Equations<!-- Bot generated title --> |accessdate=2013-03-22 |archive-date=2007-10-15 |archive-url=https://web.archive.org/web/20071015100642/http://ccrma.stanford.edu/~bilbao/master/node163.html |dead-url=no }}</ref> :<math> \rho A\frac{\partial^{2}w}{\partial t^{2}} - q(x,t) = \frac{\partial}{\partial x}\left[ \kappa AG \left(\frac{\partial w}{\partial x}-\varphi\right)\right] </math> :<math> \rho I\frac{\partial^{2}\varphi}{\partial t^{2}} = \frac{\partial}{\partial x}\left(EI\frac{\partial \varphi}{\partial x}\right)+\kappa AG\left(\frac{\partial w}{\partial x}-\varphi\right) </math> 其中因变量是梁的平移位移<math>w(x,t)</math>和转角位移<math>\varphi(x,t)</math>。注意不同于欧拉-伯努利梁理论,转角位移是另一个变量而非挠度斜率的近似。此外, * <math>\rho</math>是梁材料的[[密度]](而非[[线密度]]); * <math>A</math>是截面面积; * <math>E</math>是[[弹性模量]]; * <math>G</math>是[[剪切模量]]; * <math>I</math>是[[截面二次轴矩|轴惯性矩]]; * <math>\kappa</math>,称作铁木辛柯剪切系数,由形状确定,通常矩形截面<math>\kappa = 5/6</math>; * <math>q(x,t)</math>是载荷分布(单位长度上的力); * <math>m := \rho A</math> * <math>J := \rho I</math> 这些参数不一定是常数。 对于各向同性的线弹性均匀等截面梁,以上两个方程可合并成<ref name=Thomson>Thomson, W. T., 1981, '''Theory of Vibration with Applications'''</ref><ref name=Rosinger>Rosinger, H. E. and Ritchie, I. G., 1977, ''On Timoshenko's correction for shear in vibrating isotropic beams,'' J. Phys. D: Appl. Phys., vol. 10, pp. 1461-1466.</ref> :<math> EI~\cfrac{\partial^4 w}{\partial x^4} + m~\cfrac{\partial^2 w}{\partial t^2} - \left(J + \cfrac{E I m}{k A G}\right)\cfrac{\partial^4 w}{\partial x^2~\partial t^2} + \cfrac{m J}{k A G}~\cfrac{\partial^4 w}{\partial t^4} = q(x,t) + \cfrac{J}{k A G}~\cfrac{\partial^2 q}{\partial t^2} - \cfrac{EI}{k A G}~\cfrac{\partial^2 q}{\partial x^2} </math> <!-- :{| class="toccolours collapsible collapsed" width="60%" style="text-align:left" !Derivation of combined Timoshenko beam equation |- |The equations governing the bending of a homogeneous Timoshenko beam of constant cross-section are :<math> \begin{align} (1) & & \quad m~\frac{\partial^2 w}{\partial t^2} & = \kappa AG~\left(\frac{\partial^2 w}{\partial x^2} - \frac{\partial \varphi}{\partial x}\right) + q(x,t) ~;~~ m := \rho A \\ (2) & & \quad J~\frac{\partial^2 \varphi}{\partial t^2} & = EI~\frac{\partial^2 \varphi}{\partial x^2} + \kappa AG~\left(\frac{\partial w}{\partial x} - \varphi\right) ~;~~ J := \rho I \end{align} </math> From equation (1), assuming appropriate smoothness, we have :<math> \begin{align} (3) & & \quad \frac{\partial \varphi}{\partial x} & = -\cfrac{m}{\kappa AG}~\frac{\partial^2 w}{\partial t^2} + \frac{\partial^2 w}{\partial x^2} + \cfrac{q}{\kappa AG} \\ (4) & & \quad \frac{\partial^2 q}{\partial t^2} & = m~\cfrac{\partial^4 w}{\partial t^4} - \kappa AG~\left(\cfrac{\partial^4 w}{\partial x^2\partial t^2} - \cfrac{\partial^3\varphi}{\partial x\partial t^2}\right) \end{align} </math> From (3), assuming appropriate smoothness, :<math> (5) \qquad \cfrac{\partial^3\varphi}{\partial x^3} = -\cfrac{m}{\kappa AG}~\cfrac{\partial^4 w}{\partial x^2\partial t^2} + \cfrac{\partial^4 w}{\partial x^4} + \cfrac{1}{\kappa AG}~\frac{\partial^2 q}{\partial x^2} </math> Differentiating equation (2) gives :<math> (6) \qquad \cfrac{\partial^3\varphi}{\partial x \partial t^2} = \cfrac{EI}{J}~\cfrac{\partial^3 \varphi}{\partial x^3} + \cfrac{\kappa AG}{J}~\left(\frac{\partial^2 w}{\partial x^2} - \frac{\partial \varphi}{\partial x}\right) </math> From equations (4) and (6) :<math> (7) \qquad \cfrac{1}{\kappa AG}~\frac{\partial^2 q}{\partial t^2} -\cfrac{m}{\kappa AG}~\cfrac{\partial^4 w}{\partial t^4} + \cfrac{\partial^4 w}{\partial x^2\partial t^2} = \cfrac{EI}{J}~\cfrac{\partial^3 \varphi}{\partial x^3} + \cfrac{\kappa AG}{J}~\left(\frac{\partial^2 w}{\partial x^2} - \frac{\partial \varphi}{\partial x}\right) </math> From equations (3) and (7) :<math> (8) \qquad \cfrac{1}{\kappa AG}~\frac{\partial^2 q}{\partial t^2} -\cfrac{m}{\kappa AG}~\cfrac{\partial^4 w}{\partial t^4} + \cfrac{\partial^4 w}{\partial x^2\partial t^2} = \cfrac{EI}{J}~\cfrac{\partial^3 \varphi}{\partial x^3} + \cfrac{m}{J}~\frac{\partial^2 w}{\partial t^2} - \cfrac{q}{J} </math> Plugging equation (5) into (8) gives :<math> (9) \qquad \cfrac{J}{\kappa AG}~\frac{\partial^2 q}{\partial t^2} -\cfrac{mJ}{\kappa AG}~\cfrac{\partial^4 w}{\partial t^4} + J~\cfrac{\partial^4 w}{\partial x^2\partial t^2} = -\cfrac{mEI}{\kappa AG}~\cfrac{\partial^4 w}{\partial x^2\partial t^2} + EI~\cfrac{\partial^4 w}{\partial x^4} + \cfrac{EI}{\kappa AG}~\frac{\partial^2 q}{\partial x^2} + m~\frac{\partial^2 w}{\partial t^2} - q </math> Rearrange to get :<math> EI~\cfrac{\partial^4 w}{\partial x^4} + m~\frac{\partial^2 w}{\partial t^2} - \left(J+\cfrac{mEI}{\kappa AG}\right)~\cfrac{\partial^4 w}{\partial x^2 \partial t^2} + \cfrac{mJ}{\kappa AG}~\cfrac{\partial^4 w}{\partial t^4} = q + \cfrac{J}{\kappa AG}~\frac{\partial^2 q}{\partial t^2} - \cfrac{EI}{\kappa A G}~\frac{\partial^2 q}{\partial x^2}\quad\square </math> |} --> ==== 轴向影响 ==== 如果梁的位移由下式给出 :<math> u_x(x,y,z,t) = u_0(x,t)-z~\varphi(x,t) ~;~~ u_y(x,y,z,t) = 0 ~;~~ u_z(x,y,z) = w(x,t) </math> 其中<math>u_0</math>是<math>x</math>方向的附加位移,则铁木辛柯梁的控制方程成为 :<math> \begin{align} m \frac{\partial^{2}w}{\partial t^{2}} & = \frac{\partial}{\partial x}\left[ \kappa AG \left(\frac{\partial w}{\partial x}-\varphi\right)\right] + q(x,t) \\ J \frac{\partial^{2}\varphi}{\partial t^{2}} & = N(x,t)~\frac{\partial w}{\partial x} + \frac{\partial}{\partial x}\left(EI\frac{\partial \varphi}{\partial x}\right)+\kappa AG\left(\frac{\partial w}{\partial x}-\varphi\right) \end{align} </math> 其中<math>J = \rho I</math>,<math>N(x,t)</math>是外加轴向力。任意外部轴向力的平衡依靠应力 :<math> N_{xx}(x,t) = \int_{-h}^{h} \sigma_{xx}~dz </math> 式中<math>\sigma_{xx}</math>是轴向应力,梁的厚度设为<math>2h</math>。 包含轴向力的梁方程合并为 :<math> EI~\cfrac{\partial^4 w}{\partial x^4} + N~\cfrac{\partial^2 w}{\partial x^2} + m~\frac{\partial^2 w}{\partial t^2} - \left(J+\cfrac{mEI}{\kappa AG}\right)~\cfrac{\partial^4 w}{\partial x^2 \partial t^2} + \cfrac{mJ}{\kappa AG}~\cfrac{\partial^4 w}{\partial t^4} = q + \cfrac{J}{\kappa AG}~\frac{\partial^2 q}{\partial t^2} - \cfrac{EI}{\kappa A G}~\frac{\partial^2 q}{\partial x^2} </math> ==== 阻尼 ==== 如果,除轴向力外,我们考虑与速度成正比的阻尼力,形如 :<math> \eta(x)~\cfrac{\partial w}{\partial t} </math> 铁木辛柯梁的耦合控制方程成为 :<math> m \frac{\partial^{2}w}{\partial t^{2}} + \eta(x)~\cfrac{\partial w}{\partial t} = \frac{\partial}{\partial x}\left[ \kappa AG \left(\frac{\partial w}{\partial x}-\varphi\right)\right] + q(x,t) </math> :<math> J \frac{\partial^{2}\varphi}{\partial t^{2}} = N\frac{\partial w}{\partial x} + \frac{\partial}{\partial x}\left(EI\frac{\partial \varphi}{\partial x}\right)+\kappa AG\left(\frac{\partial w}{\partial x}-\varphi\right) </math> 合并方程为 :<math> \begin{align} EI~\cfrac{\partial^4 w}{\partial x^4} & + N~\cfrac{\partial^2 w}{\partial x^2} + m~\frac{\partial^2 w}{\partial t^2} - \left(J+\cfrac{mEI}{\kappa AG}\right)~\cfrac{\partial^4 w}{\partial x^2 \partial t^2} + \cfrac{mJ}{\kappa AG}~\cfrac{\partial^4 w}{\partial t^4} + \cfrac{J \eta(x)}{\kappa AG}~\cfrac{\partial^3 w}{\partial t^3} \\ & -\cfrac{EI}{\kappa AG}~\cfrac{\partial^2}{\partial x^2}\left(\eta(x)\cfrac{\partial w}{\partial t}\right) + \eta(x)\cfrac{\partial w}{\partial t} = q + \cfrac{J}{\kappa AG}~\frac{\partial^2 q}{\partial t^2} - \cfrac{EI}{\kappa A G}~\frac{\partial^2 q}{\partial x^2} \end{align} </math> == 切变系数 == 确定切变系数不是直接的,一般它必须满足: :<math>\int_A \tau dA = \kappa A G \varphi\,</math> 切变系数由[[泊松比]]确定。更严格的表达方法由多位科学家完成,包括[[斯蒂芬·铁木辛柯]]、雷蒙德·明德林(Raymond D. Mindlin)、考珀(G. R. Cowper)和约翰·哈钦森(John W. Hutchinson)等。工程实践中,斯蒂芬·铁木辛柯的表达一般状况下足够好。<ref>Stephen Timoshenko, James M. Gere. Mechanics of Materials. Van Nostrand Reinhold Co., 1972. Pages 207.</ref> 对于固态矩形截面: :<math> \kappa = \cfrac{10(1+\nu)}{12+11\nu} </math> 对于固态圆形截面: :<math> \kappa = \cfrac{6(1+\nu)}{7+6\nu} </math> ==参考文献== {{reflist|colwidth=30em}} *{{cite book| author=Stephen P. Timoshenko| title=Schwingungsprobleme der technik| publisher=Verlag von Julius Springer| year=1932 | id=}} [[Category:固体力学]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
铁木辛柯梁理论
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息