查看“︁螺旋函数”︁的源代码
←
螺旋函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Swirl0.JPG|thumb|300px|swirl function Maple plot]] '''螺旋函数'''(Swirl function)是一个以[[三角函数]]定义的[[特殊函数]]<ref>Trott, M. Graphica 1: The World of Mathematica Graphics. The Imaginary Made Real: The Images of Michael Trott. Champaign, IL: Wolfram Media, pp. 36-37 and 86, 1999. </ref>: <math>S(k,n,r,\theta)=sin(k*cos(r)-n*\theta)</math> 其中k,n均为整数。k与螺旋叶的长度与形状有关,n为螺旋的叶片数。 ==对称性== ;镜像对称 *<math>S(k,n,r,\theta)</math>与<math>S(k,-n,r,\theta)</math> 互为镜像对称. *<math>f(-k, n, r, \theta)=-f(k, n, r, -\theta) </math> *<math>f(-k, n, r, \theta)=-f(k, -n, r, \theta) </math> *<math>f(-k, -n, r, \theta)=-f(k, n, r, \theta) </math> *<math>f(-k, n, r, -\theta)=-f(k, n, r, \theta) </math> *<math> f(-k, n, r, \theta)=-f(k, n, -r, -\theta) </math> *<math> f(-k, n, -r, -\theta)=-f(k, n, r, \theta) </math> *<math> f(-k, -n, -r, \theta)=-f(k, n, r, \theta) </math> *<math> f(-k, n, -r, -\theta)=-f(k, n, r, \theta) </math> ;全对称 *<math>f(k, -n, r, \theta)=f(k, n, r, -\theta)</math> *<math>f(k, -n, r, -\theta)=f(k, n, r, \theta) </math> *<math> f(k, n, -r, \theta)=f(k, n, r, \theta) </math> *<math> f(k, n, -r, \theta)=f(k, n, r, \theta) </math> *<math> f(k, n, -r, \theta)=f(k, -n, r, -\theta) </math> *<math> f(k, -n, -r, -\theta)=f(k, n, r, \theta) </math> *<math> f(k, n, -r, \theta)-f(k, n, r, \theta) </math> ;旋转对称 <math>S(k,n,r,\theta+\frac{2\pi}{n})=S(k,n,r,\theta)</math> ==级数展开== <math>S(k,n,r,\theta) \approx {sin(k-n*\theta)-(1/2)*cos(k-n*\theta)*k*r^2+(-(1/8)*sin(k-n*\theta)*k^2+(1/24)*cos(k-n*\theta)*k)*r^4+((1/48)*sin(k-n*\theta)*k^2+cos(k-n*\theta)*(-(1/720)*k+(1/48)*k^3))*r^6+O(r^8)}</math> <math>S(k,n,r,\theta) \approx {sin(k*cos(r))-cos(k*cos(r))*n*\theta-(1/2)*sin(k*cos(r))*n^2*\theta^2+(1/6)*cos(k*cos(r))*n^3*\theta^3+(1/24)*sin(k*cos(r))*n^4*\theta^4-(1/120)*cos(k*cos(r))*n^5*\theta^5-(1/720)*sin(k*cos(r))*n^6*\theta^6+(1/5040)*cos(k*cos(r))*n^7*\theta^7+(1/40320)*sin(k*cos(r))*n^8*\theta^8+O(\theta^9)}</math> ==与其他特殊函数关系== *<math>S(k,n,r,\theta)={ \frac{ \left( nx\arccos \left( x \right) +1/2\,\pi \right) {{\rm KummerM}\left(1,\,2,\,i \left( 2\,nx\arccos\left( x \right) +\pi \right) \right)} }{{{\rm e}^{1/2\,i \left( 2\,nx\arccos \left( x \right) +\pi \right) }}}}</math> *<math>S(k,n,r,\theta)={\frac {-i \left( 2\,nx\arccos \left( x \right) +\pi \right) {{\rm WhittakerM}\left(0,\,1/2,\,i \left( 2\,nx\arccos \left( x \right) +\pi \right) \right)} }{4\,nx\arccos \left( x \right) +2\,\pi }} </math> *<math>S(k,n,r,\theta)={\frac {-1/2\,i \left( -1+{{\rm e}^{i \left( 2\,nx\arccos \left( x \right) +\pi \right) }} \right) }{{{\rm e}^{1/2\,i \left( 2\,nx \arccos \left( x \right) +\pi \right) }}}} </math> *<math>S(k,n,r,\theta)=-n{x}^{2}{\it HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {1/2\,i \left( 2\,n x \left( 1/2\,\pi -x{\it HeunC} \left( 0,1/2,0,0,1/4,{\frac {{x}^{2}}{ {x}^{2}-1}} \right) {\frac {1}{\sqrt {1-{x}^{2}}}} \right) +\pi \right) } \right) {\it HeunC} \left( 0,1/2,0,0,1/4,{\frac {{x}^{2}}{{ x}^{2}-1}} \right) {\frac {1}{\sqrt {1-{x}^{2}}}} \left( {{\rm e}^{-1/ 2\,i \left( -nx\pi \,\sqrt {1-{x}^{2}}+2\,n{x}^{2}{\it HeunC} \left( 0 ,1/2,0,0,1/4,{\frac {{x}^{2}}{{x}^{2}-1}} \right) -\pi \,\sqrt {1-{x}^ {2}} \right) {\frac {1}{\sqrt {1-{x}^{2}}}}}} \right) ^{-1}+1/2\,\pi \, \left( nx+1 \right) {\it HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {1/2 \,i \left( 2\,nx \left( 1/2\,\pi -x{\it HeunC} \left( 0,1/2,0,0,1/4,{ \frac {{x}^{2}}{{x}^{2}-1}} \right) {\frac {1}{\sqrt {1-{x}^{2}}}} \right) +\pi \right) } \right) \left( {{\rm e}^{-1/2\,i \left( -nx \pi \,\sqrt {1-{x}^{2}}+2\,n{x}^{2}{\it HeunC} \left( 0,1/2,0,0,1/4,{ \frac {{x}^{2}}{{x}^{2}-1}} \right) -\pi \,\sqrt {1-{x}^{2}} \right) { \frac {1}{\sqrt {1-{x}^{2}}}}}} \right) ^{-1} </math> ==图例== ;螺旋叶数与镜像对称 <gallery> File:Swirl minus2.JPG|7,-2 File:Swirl2.JPG|7,2 File:Swirl minus4.JPG|7,-4 File:Swirl4.JPG|7,4 File:Swirl minus6.JPG|7,-6 File:Swirl6.JPG|7,6 File:Swirl minus8.JPG|7,-8 File:Swirl8.JPG|7,8 File:Swirl minus10.JPG|7,-10 File:Swirl10.JPG|7,10 File:Swirl minus12.JPG|7,-12 File:Swirl12.JPG|7,12 </gallery> ;螺旋叶形 <gallery> File:Swirl04.JPG|0,4 File:Swirl14.JPG|1,4 File:Swirl24.JPG|2,4 File:Swirl74.JPG|7,4 File:Swirl-54.JPG|-5,4 File:Swirl-94.JPG|-9,4 File:Swirlk30.JPG|30,4 </gallery> ==参考文献== <references/> [[Category:特殊函数]]
返回
螺旋函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息